

D R A F T

OPEN ARCHITECTURE

COMPUTING ENVIRONMENT
DESIGN GUIDANCE

Pre-release Version 1.0

September 2003

This document is a pre-release copy intended for final review prior to its signature and release as
an Open Architecture initiative guidance document. The document is available for review on
NSWCDD ViewNet and final commentary for a period of one week, beginning 4 September and
concluding 12 September. Comments should be addressed to Michael W. Masters,
MastersMW@nswc.navy.mil.

D R A F T

Version 1.0 (DRAFT) 04 September 2003 ii

(this page intentionally left blank)

Version 1.0 (DRAFT) 04 September 2003 iii

FOREWORD

 The Assistant Secretary of the Navy for Research, Development and Acquisition (ASN
(RD&A)) assigned responsibility for coordinating the introduction of Open Architecture (OA)
into the Navy's warfighting systems to the Program Executive Office for Integrated Warfare
Systems (PEO IWS). As part of the OA tasking, and based on significant research and testing,
the PEO IWS Open Architecture technical team has developed a number of supporting
documents relevant to Open Architecture. These documents describe the process and technical
characteristics of and standards applicable to functional capabilities and computing system
technologies in support of OA-based warfighting systems. In accord with the Joint Technical
Architecture (JTA), the OA initiative encompasses both system architecture and technical
architecture. (Operational architecture is not expected to initially change as a result of OA and so
is not currently documented.) The technical architecture, or unified standards-based set of
computing resources, is called the Open Architecture Computing Environment (OACE). These
documents provide significant insight into OA capabilities and requirements. They have been
through a formal review cycle within the Navy as well as an industry comment phase.

Computing technology is a key part of the OA effort. This document, Open Architecture
Computing Environment Description, Version 1.0, provides guidance concerning design aspects
of the standards-based computing environment that is to be used in OA warfighting systems. A
companion document, Open Architecture Computing Environment Technologies and Standards,
Version 1.0, provides an enumeration of the standards and product selection criteria that apply to
the OACE technology base. The scope of OA is intended to encompass warfighting systems for
ships, submarines and aircraft – including their sensor systems, weapon systems, combat
direction systems and other mission critical support systems. Initial review indicates that the
design guidance as written has applicability in both the warfighting system domain as well as the
command, control and communication domains. Therefore, selected C4ISR systems are also
included, the specifics of which are still under discussion. Therefore this document is intended
to provide overall guidance for the design and implementation of warfighting-capable software
which, when coupled with OACE, will meet warfighting mission requirements for systems
across the range of deployments listed above.

This document contains two major technical guidance sections. The first, section 3.2.2,
Component Design Guidance, provides guidelines useful for constructing real-time distributed
warfighting application computer programs. The second, section 3.2.3, Open Architecture
Computing Environment, provides a description of the technology base to be employed in
conjunction with OA warfighting systems. Based on initial industry and government feedback, it
is anticipated that this document will be rewritten as two separate documents. The current
section 3.2.3, Open Architecture Computing Environment will be developed as a separate
document and be re-titled, Open Architecture Computing Environment Description. The current
descriptive content will be augmented with the addition of requirements information. This
rewritten capabilities document will define computing metrics and enumerate required
functionality and performance capabilities of the OACE as a computing infrastructure. The
current section 3.2.2, Component Design Guidance will be recast in technical report format, and
it will describe principles of distributed system design applicable to warfighting systems that fall

Version 1.0 (DRAFT) 04 September 2003 iv

within the scope of OA. Thus, the current section 3.2.2 should be treated as non-binding
guidance. The new document will be titled Open Architecture Application Design Guidelines.

This guidance has been developed by the OA Technical Architecture team for Program
Executive Office for Integrated Warfare Systems (PEO IWS). The guidance will be updated on a
periodic basis by PEO IWS according to a formal process (currently being defined) that is closely
aligned with changes in the commercial market as well as according to a cycle that meet the
needs of Programs of Record adhering to the OA guidance. Because of the ongoing nature of
this effort, comments on the document or the material contained herein are always in order. As
input to this process, program managers, industry sources and system developers are requested by
the OACE Technical Architecture (TA IPT) team to provide inputs concerning their computing
requirements according to the particulars described in the next paragraph. Inputs will be
incorporated into a new issue of this document and the standards document as appropriate.

Comments and recommended changes should reference a specific page or paragraph
whenever possible and should provide supporting rationale describing the anticipated utility and
implementation implications of the change. In addition, each responding organization should
identify a single point of contact for discussion of proposed changes. Inputs may be provided at
any time but will be considered for incorporation only at scheduled (approximately annual)
updates. The next update is scheduled for September 2004. To provide inputs, or for further
information concerning Open Architecture and the applicability of this document, contact the OA
Project Officer, CAPT Thomas J. Strei, PEO IWS Code 1S at StreiTJ@navsea.navy.mil or (202)
781-1160. For further information concerning technical content and/or to provide recommended
changes to this interim document, contact lead editor Michael W. Masters, Chief Scientist, OA
Technical Architecture Team, NSWCDD, Code B30, 17320 Dahlgren Road, Dahlgren, Virginia
22448-5100, (540) 653-1611, or via email at MastersMW@nswc.navy.mil.

Version 1.0 (DRAFT) 04 September 2003 v

Contents

Section Page

1 PURPOSE... 1

1.1 Open Architecture Rationale.. 2
1.2 Open Architecture Goals.. 3
1.3 Open Architecture Scope ... 3

1.3.1 Warfighting Function Applicability .. 4
1.3.2 Computational Domain Applicability ... 4

1.4 Open Architecture Approach ... 5
1.4.1 OA System architecture... 6
1.4.2 OA Technical Architecture ... 7

1.5 Open Systems and Standards ... 7
1.5.1 Open System Characteristics... 9
1.5.2 Open Architectures.. 11
1.5.3 Applicability of Standards and Guidance.. 12
1.5.4 Managing Change with Standards and Middleware.. 12
1.5.5 Non-standard Products .. 15
1.5.6 Benefits of Open Architecture... 15

1.6 Open Architecture Documents... 17
1.6.1 Document Overview ... 18

2 APPLICABLE DOCUMENTS .. 19
3 OPEN ARCHITECTURE GUIDANCE... 22

3.1 Technical Overview ... 22
3.1.1 Functional Partitioning.. 23
3.1.2 Computing Characteristics .. 23
3.1.3 Federated vs. Integrated Architectures .. 24

3.1.3.1 Federated Approach.. 24
3.1.3.2 Integrated approach... 25
3.1.3.3 OA Guidelines .. 25

3.1.4 Implementation Constraints .. 26
3.1.5 Development Processes and Tools .. 27

3.2 Application Design Guidance .. 28
3.2.1 Architecture and Design Patterns .. 29
3.2.2 Component Design Guidance.. 31

3.2.2.1 Component Design ... 32
3.2.2.2 Portability ... 40
3.2.2.3 Location transparency... 42
3.2.2.4 Client-Server... 44
3.2.2.5 Data Distribution .. 48
3.2.2.6 State Data Coherency ... 51
3.2.2.7 Computational Flow ... 52
3.2.2.8 Fault Tolerance ... 54
3.2.2.9 Scalability ... 59

Version 1.0 (DRAFT) 04 September 2003 vi

3.2.2.10 Real-time Performance... 64
3.2.2.11 Process, Thread and Memory Management ... 69
3.2.2.12 Data Brokers... 71

3.2.3 Open Architecture Computing Environment .. 72
3.2.3.1 Cabling and Cabinets.. 76
3.2.3.2 Information Transfer... 77
3.2.3.3 Computing Resources... 79
3.2.3.4 Peripherals .. 82
3.2.3.5 Operating Systems .. 82
3.2.3.6 Adaptation Middleware .. 84
3.2.3.7 Distribution Middleware... 84
3.2.3.8 Design Patterns and Frameworks ... 88
3.2.3.9 Dynamic Resource Management (DRM) ... 89
3.2.3.10 Instrumentation, Recording and Assessment ... 92
3.2.3.11 Failure Management... 94
3.2.3.12 Information Assurance ... 95
3.2.3.13 Time Service .. 96
3.2.3.14 Programming Language Facilities.. 97

3.2.4 System Composition ... 97
3.2.5 Displays ... 98

3.2.5.1 Description.. 98
3.2.5.2 Guidance... 98

3.2.6 System Test and Certification ... 99
3.2.6.1 Description.. 99
3.2.6.2 Guidance... 100

3.2.7 Selection of Standards... 100
3.2.7.1 Applicable Standards.. 101
3.2.7.2 Open Source Products .. 101
3.2.7.3 Non-standard products.. 102

Appendix A Glossary of Terms... 103

Version 1.0 (DRAFT) 04 September 2003 vii

Figures

Figure 1. Notional OA Functional Architecture... 6
Figure 2. Open Architecture Computing Environment .. 8
Figure 3. Open System Model.. 10
Figure 4. Application Portability Strategies ... 13
Figure 5. Managing Change with Middleware... 14
Figure 6. Functional Partitioning.. 36
Figure 7. Client-Server Model.. 46
Figure 8. Fault Tolerance Models .. 55
Figure 9. Partitioning Scalability Patterns.. 60
Figure 10. Load Sharing by Replication... 62
Figure 11. Comparison of design models... 68
Figure 12. Open Architecture Computing Environment ... 73
Figure 13. Notional Physical Architecture ... 74
Figure 14. Resource Management Architecture... 90

Tables

Table 1. Architecture Concepts and Benefits ... 16
Table 2. OA Document Set .. 17
Table 3. OA Constraints... 27
Table 4. Application Design Guidance Index ... 29
Table 5. OACE Guidance Index.. 76
Table 6. Units of Computing Performance Parameters.. 81
Table 7. Types of Standards ... 101

Version 1.0 (DRAFT) 04 September 2003 viii

(this page intentionally left blank)

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 1 04 September 2003

1 PURPOSE

This Open Architecture (OA) description document provides computing architecture,
technology and design guidance for the computer programs and computing infrastructure of
future Naval Warfare Systems (NWS). The goal of the OA development effort is to design and
build an NWS that not only continues to meet its growing and changing performance
requirements well into the 21st century, but also that may be rapidly and affordably maintained,
refreshed, and upgraded throughout its life-cycle. Design goals also include enhanced Human
Systems Integration (HSI) and optimized manning.

The purpose of this guidance document is to provide technical principles and design
guidelines for redesigning and re-implementing NWSs in an architecture suitable for meeting the
performance, long-term maintenance, and upgrade goals described above. The overall set of
computing resources used in OA systems is called the Open Architecture Computing
Environment (OACE). The guidance contained herein describes overall computing system
architecture, system-wide design principles, computing equipment and support software
infrastructure technologies, standards, application functional partitioning principles, computer
program characteristics, and development strategy. The intent of the guidance is to characterize
design techniques that have proven successful in other systems and prototypes comparable in
complexity and/or stressing requirements to NWSs, e.g. commercial, business, financial,
medical, telecommunications, and process control applications. The guidance also focuses
attention of the technology base needed to sustain performance for NWS applications.

No initial change in NWS functional capabilities are anticipated that would impact
system requirement specifications such as the System Specification (A-Specification) and Prime
Item Development Specifications (PIDS) as a result of the guidance contained in this document.
Rather, this guidance document is intended to foster development of a robust and enduring
computer program design and equipment utilization approach that will meet mission needs in the
2010 time frame and beyond. However, while OA does not itself bring new warfighting
capability, one of its major goals is the enabling of rapid insertion of new capabilities; see
Section 1.2 Open Architecture Goals. To that end, a Rapid Technology Insertion Process (RTIP)
is being developed to foster rapid transition of warfighting functionality into the fleet. This
process, to be documented in a separate report, mirrors the successful Acoustic Rapid COTS
Insertion (ARCI) and Advanced Processor Build (APB) processes employed by PEO Subs for
upgrade of submarine and surface ship sonar capabilities.

OA will accomplish its goals by adapting and exploiting new developments in open
system design principles and system architectures, as well as standards-based computing
technologies from the Commercial Off-The-Shelf (COTS) marketplace. Briefly, open systems
involve the use of widely accepted and available specifications, standards, products, and design
practices to produce systems that are interoperable and easy to modify and extend.

The OA approach will contribute to managing, controlling, and monitoring the problems
associated with technology insertion and refresh, mission capability upgrade and total ownership
cost. However, it should be noted that the technical aspects of OA design are not by themselves,

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 2

the total solution to all problems of system performance and cost. Additional efforts required
will include process changes, new tools, revised test methods, training, etc.

OA implementation scope will be negotiated between the Navy and the prime contractor
through the system development process. Where funding issues arise or requirements should be
negotiated, the prime contractor will perform trade studies to facilitate cost trade-off analysis.

1.1 Open Architecture Rationale

Naval mission requirements continue to grow. Newly emerging AAW threats, Area and
SBMD, and Land Attack support for the emerging Operational Maneuver From the Sea
(OMFTS) concept are leading to ever-increasing performance requirements for the NWS.
Because of these new threats and missions, warfighting systems continue to evolve and change
even as new destroyers continue to be constructed and existing cruisers and destroyers are
modernized. The NWS computing system should be prepared to meet these expanding
requirements, as well as those of other warfare areas, both now and in the future.

Primary challenges facing the Navy, as documented in Forward from the Sea (reference
(e)) and N86 Surface Warfare Roadmap (reference (h)), are to achieve Anti-Air Warfare (AAW)
Air dominance in the face of future threat environments and to provide capabilities for Land
Attack in the littoral environment. Requirements also exist to support evolution of Sea Based
Missile Defense (SBMD), an area that is of critical interest to the U.S. Navy. These challenges
translate into providing surface combatants with warfighting upgrades to avoid obsolescence and
to pace the threat while containing total cost of ownership.

In addition, many ship classes have major mission capabilities in ASUW, ASW, Strike,
Mine Warfare and other areas. It is the intent of the OA program to consider each of these areas
and to address all that are consistent with the funding and schedule objectives of the program.
This is true for two reasons. First, functional commonality is often predicated on the
characteristics of a mission area. While it is true that some potentially common functions and
services support a variety of mission areas (e.g. display frameworks), some do not (e.g. AAW
doctrine). Secondly, one of the major goals of OA is to enable more rapid insertion of new
warfighting capabilities—which are generally warfighting mission related.

 The impetus for the OA initiative has been given force by a number of factors.
Development and life cycle support cost continues to be a major concern for the Navy acquisition
community. COTS refreshes are costly and time consuming. Interoperability problems continue
to diminish fleet effectiveness. Many systems still implemented in old architectures are difficult
to change, and the time required to change is excessive. In summary, the problems that are to be
addressed by OA are as follows:

• Warfighting system requirements are increasing in scope and complexity, which dictates
frequent changes and upgrades to warfighting systems. In turn, these lead to frequent
computer equipment upgrades and computer program changes and upgrades.

• Some current warfighting system architectures still reflect the shared memory legacy
design inherited from its military standard computing origins. For this reason, the design
is relatively inflexible and difficult to change. Consequently, upgrades are both costly

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 3

and time consuming.

• The implementation of the current warfighting system is, in many cases, specifically
tailored to the technical details of the underlying networks, computers, operating systems,
middleware, and other infrastructure components. Some components are non-standards-
based and fluctuate significantly with respect to availability in the market place. This
impacts the magnitude of computer program changes required to accommodate new
COTS technologies during technology refreshes.

The evolution of high performance COTS, combined with continued growth of
warfighting system requirements, provides an opportunity to design an architecture more capable
of exploiting new technologies than the often proprietary legacy architectures that have served
the Navy for well over two decades. The need for evolution toward an open architecture is
motivated by both performance and supportability considerations. These factors are discussed in
the next section.

1.2 Open Architecture Goals

The factors introduced in the preceding section have led to high estimated costs for life-
cycle computer program maintenance, as well as equipment and support software technology
refreshes. The funding required has been judged to present a significant budget barrier to
continued system development and fleet support. Problems associated with high cost, long
time-to-market and inflexibility of design also arises in the commercial sector. The commercial
sector, in turn, has done a good job of addressing these issues in recent years.

As a result, the following goals have been adopted for OA:

• Reduce total ownership cost
• Make system change and upgrade easier and faster
• Lower the impact of commercial off-the-shelf (COTS) computing technology

refreshes
• Reduce compatibility and interoperability problems

1.3 Open Architecture Scope

This document applies to the computing implementation of the functional capabilities
embodied in NWSs, including but not limited the ship classes shown below. These ship classes
are covered under the scope of the OA program, and therefore under the guidelines of the OACE.
The OACE standards information contained herein applies to all new constructions and,
selectively, to backfit. Schedule information will be provided in separate documentation.

• Aegis-equipped cruisers and destroyers (DDG new construction and CG/DDG backfit)

• SSDS-equipped carriers and large deck amphibious assault ships, e.g. LPDs, LHAs,
LHDs, etc. (new construction and backfit)

• Submarines (new construction and backfit)

• DD(X) land attack destroyer (future construction)

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 4

• Littoral Combat Ship (LCS) (future construction)

1.3.1 Warfighting Function Applicability

OACE computing capabilities are intended to serve the requirements of not only the
common functions listed above but also other warfighting functions as well. Extending and
generalizing the list of supporting common functions contained in Section 1.4.1, the following
list of application domain functional categories is considered within scope of OACE guidance.

• Sensor control
• Signal processing (only where requirements permit)
• Local sensor fusion and track formation
• Remote sensor fusion, gridlock, data registration, etc.
• External Communications
• Combat Direction
• Weapon control
• Fire control
• Navigation
• Readiness, damage control, etc.
• Tactical Training
• Tactical display
• Tactical support services and frameworks

1.3.2 Computational Domain Applicability

The scope to which OACE capabilities apply encompasses most but not all combat
system and support system application areas. Included are

• Real-time tactical computation requirements that can be met by mainstream commercial
products

• Physically embedded computational requirements that can be met by well-accepted niche
market products

• Tactical display and decision support requirements that can be met by mainstream COTS;
and

• High security requirements that can be met by appropriate commercial technology, albeit
niche market.

Not included within the present scope of OACE are performance domains for which
custom designed special purpose devices are required to meet performance requirements. Also
not included are decision support resources with little or no real-time requirements and other
systems such as:

• Extremely high performance domains such as some signal processing

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 5

• Low-level embedded devices such as those that implement machinery control or other
Hull, Mechanical and Electrical (HM&E) functions

• Command support functions such as those associated with Information Technology – 21st
Century (IT-21)

• Administrative or personal computing support, e.g. personal laptops

In the case of IT-21, further examination is required to determine the degree of overlap
between IT-21 and OACE. In any case, interconnect and bridging technologies for interfacing
components of the above types to OACE-based systems are included.

1.4 Open Architecture Approach

The approach that has been developed in the commercial sector to ameliorate these
limitations is often referred to as the open systems approach, which is elaborated in Section 1.5
Open Systems and Standards. It is likely that the open systems approach evolved first in the
commercial environment because most commercial applications are considerably less stressing
then military real-time applications. Most commercial enterprises do not have to contend with
the additional complexities engendered by real-time mission critical systems. However, as time
has passed and the computing technology has continued to improve, those solutions first adopted
in the commercial sector for dealing with complexity, time-to-market, and cost containment are
finally becoming feasible in real-time systems.

This practice has not necessarily been universally applied within the commercial sector;
in fact, examples can be cited where commercial solutions have made matters worse.
Nevertheless, many successful instances of commercial solutions are available, and it is these
that form the pattern for the OA effort.

The OA initiative process to accomplish its goals is to evolve Navy surface ship
warfighting systems from the current status quo – many warfighting systems and ship classes
developed over time and under less than fully coordinated acquisition strategies – toward a
unified Navy warfighting system product line. The unified product line approach is based on two
major technical implementation concepts, see the list below. This two part approach applies
directly to future construction, and it may in cases apply to backfit as well. Adopting JTA
terminology, the two technical aspects are system architecture and technical architecture. Each is
discussed in the sections that follow, 1.4.1 OA System architecture and 1.4.2 OA Technical
Architecture. Their characteristics are summarized below.

• System architecture — A unified implementation architecture built to a single functional
design and incorporating both unique applications and common warfighting functions
that are shared across many ship classes

• Technical architecture — A layered, standards-based computing environment (the
OACE) applicable, with variations, to all warfighting systems.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 6

1.4.1 OA System architecture

A key aspect of the OA system architecture approach is to develop common warfighting
functional components. These will be developed by existing Navy Programs of Record (POR),
through production contracting arrangements. Guidance for the common functions is being
provided by the OA initiative in conjunction with the relevant PORs. These common
components must be matched to and integrated with the unique warfighting components
associated with a particular ship class or backfit upgrade. While some shipboard components
must inevitably be unique to mission and function, applying the principle of commonality and
reuse wherever possible is seen as a major mechanism for cost control in future Navy warfighting
systems. Figure 1. Notional OA Functional Architecture provides a high-level view of the
functional architecture.

Commonality of warfighting functions is a primary goal for OA. The following list
represents a partial enumeration of candidate common warfighting functions. This list should be
interpreted as illustrative rather than definitive.

• Mission Planning
• Track Formation
• Tactical Information Mgmt

Acoustic
Suite

1.0 Search/Detect

EO/IR
Suite

ES/Elint
Suite

Radar/IFF
Suite

Imagery
Suite

Acoustic
Suite

1.0 Search/Detect

EO/IR
Suite

ES/Elint
Suite

Radar/IFF
Suite

Imagery
Suite

5.0 Mission
Execution

Threat
Assessment/ID

3.2

Readiness
Assessment/

Status
3.3

Mission
Assessment

3.4

Mission
Control

3.5

DDS Data Links SatCom Radios6.0 EXCOMM

1

5

7

Mission
Planning

3.1

6

Tactical Inform
ation

M
anagem

ent
2.2

2.0 D
ata/Inform

ation Services
Track

M
anagem

ent
2.1

3

9.0 Force Planning/Execution

1

3

2

Air/Surface
Missile

Land Attack
Missile

Torpedo

Decoy

Gun

Aircraft

Boat

Engineering

Damage

Bridge

Un-manned
Vehicles

Engagem
ent C

ontrol
4.1

Ship
Asset C

ontrol
4.3

O
ff B

oard
Asset C

ontrol
4.2

4.0 W
eapon/Asset Services

Engagem
ent C

ontrol
4.1

Engagem
ent C

ontrol
4.1

Ship
Asset C

ontrol
4.3

Ship
Asset C

ontrol
4.3

O
ff B

oard
Asset C

ontrol
4.2

O
ff B

oard
Asset C

ontrol
4.2

4.0 W
eapon/Asset Services

8

Weapons

Off Board
Assets

Ship Assets

1
7.0 Common Services

Display
7.1

Time
7.2

NAV
7.3

DX/DR
7.4

3.0 Planning, Assessment & Decision

4
8.0 Training Training

Control
8.1

Monitor & Asses
Exercise

8.2

Provide Simulated
Training Tracks

8.3

Coordinate Live
Training Tracks

8.4

Provide Simulated
Weapon/Asset
Response 8.4

5

1

6.1 EXCOMM Control

7

Figure 1. Notional OA Functional Architecture

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 7

• Identification
• Doctrine Management
• Threat Evaluation
• Damage Control
• Mission Evaluation
• Readiness Control
• Readiness Assessment
• Training
• Display
• Time
• Navigation
• Data Extract / Record
• Ship Control
• UV Control

1.4.2 OA Technical Architecture

Achieving commonality of warfighting components across ship classes places a
corresponding requirement for application computer program portability across potentially
differing equipment and support software bases. The rapidly changing nature of COTS also
levies portability requirements on application software as an enabler of low-cost COTS
technology refreshes.

To that end, the OA initiative includes a coherent computing technology strategy based
on the widely employed commercial practice called open systems – that is, standards-based
systems that are easy to upgrade and change over time. This strategy is based on maximum use
of a compatible set of layered, standards-based computing technologies, many of them real-time
capable – the OACE. Standards based operating systems are a key aspect of open systems. Also,
within this layered approach, various forms of adaptive and service-based third party software,
collectively called middleware, provides additional isolation mechanisms between applications
and equipment that contribute to application portability. Figure 2. Open Architecture
Computing Environment, illustrates the key components of the OACE and shows the isolating
nature of operating systems and middleware standards.

Finally, system requirements may include not only capability and performance goals but
also non-functional engineering goals as well (“-ilities”). In addition to traditional metrics such
as reliability and survivability, OA metrics include qualitative goals such as portability,
scalability, extensibility, and flexibility of use. These goals will be met, in part, by careful design
and in part through use of open systems principles and standards. This document focuses
primarily on the technical aspects of designing OA. In many cases, the recommended design
choices and technologies are chosen with the goal of supporting this qualitative metrics as well.

1.5 Open Systems and Standards

In broad and general terms, architecture is defined as “the structural design of an entity.”
Adding “openness” to the list of architectural characteristics implies that the “structure” of the

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 8

architecture explicitly promotes interoperability, both internally and externally, as well as ease of
modification and extension. The open system approach has become an important aspect of
system design and development in a wide variety of enterprises. This is true primarily because
open systems convey certain benefits in terms of reduced life-cycle cost, reduced time-to-market,
increased ability to inter-operate and cooperate with others, reduced personnel training, etc. A
number of open systems definitions exist within the literature. From a process and business
strategy point of view, this guidance document adopts the definition developed by the DoD Open
Systems Joint Task Force (OSJTF), which operates at the level of the Office of the Secretary of
Defense:

Open Systems Approach: An integrated business and technical strategy that
employs a modular design and, where appropriate, defines key interfaces using
widely supported, consensus-based standards that are published and maintained by
a recognized industry standards organization.
 — DOD Open Systems Joint Task Force

A number of technical definitions for open systems are available. Given the selection of
standards for OA, perhaps one of the most relevant is the definition adopted for the POSIX
operating system standard by IEEE.

Warfighting
Applications

&

Common
services

App App App

Cable Plant & Layer 3
Switched/Routed LAN

(TIA, IETF)

Operating Systems
(IEEE POSIX) OS

CPU

OS OS OS OS OS

CPU CPU CPU CPU CPUMainstream COTS
Processors

Distribution Adaptation FrameworksMiddleware
(OMG)

Standards
Based

R
e
s
o
u
r
c
e

M
a
n
a
g
e
m
e
n
t

Domain
Unique

App

Time Nav DX/DR

Standards
Based

Open Architecture Computing
Environment (OACE)

• Standards-based
• Commercial mainstream

Standards and middleware isolate applications from technology change

Unique Common

Figure 2. Open Architecture Computing Environment

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 9

Open system: “A system that implements sufficient open specifications for
interfaces, services, and supporting formats to enable properly engineered
application software: (a) to be ported with minimal changes across a wide range
of systems, (b) to interoperate with other applications on local and remote
systems, and (c) to interact with users in a style that facilitates user portability.”

 — IEEE POSIX Standard

1.5.1 Open System Characteristics

Open systems – and architectures built to open system principles – possess a number of
common characteristics. While not every open system possesses every possible characteristic,
most open systems tend to possess most of these characteristics. Based on examination of
various open system definitions, the attributes of an open system include the following:

• Use of public, consensus-based standards
• Adoption of standard interfaces
• Adoption of standard services (defined functions)
• Use of product types supported by multiple vendors
• Selection of stable vendor with broad customer base and large market share
• Interoperability, with minimal integration
• Ease of scalability and upgradability
• Portability of application(s)
• Portability of users
A number of the points need amplification. First, while upgradability is a well-

recognized characteristic of open system designs, scalability may not be so widely accepted.
Scalability has a number of possible meanings, some of which are discussed later in this
document. Second, open specifications are those for which a consensus-based standards
organization provides control and adjudication over content and evolution. Third, the unusual
attribute, “portability of users,” denotes the benefit whereby users can transition easily to a
particular new system given experience with other similar systems.

Finally, the invocation of widely used public standards must be qualified. There are
many standards from which to choose. The choice of a standard is predicated not only on the
content of the standard but on its applicability to the domain to which it is applied. Practically,
this means that standards much fit their application domain. For Navy warfighting systems, with
a substantial requirement for mission critical real-time performance, standards must be chosen
from standards families that contain a real-time aspect. This does not mean that all aspects of the
chosen standard are real-time, nor that real-time performance is necessarily invoked for all
applications using the standard. But, it does mean that the real-time requirement is a necessary
condition for OA standards—particularly in the operating system and middleware areas. This
philosophy is reflected in the Open Architecture Computing Environment Technologies and
Standards, Version 1.0 document, the companion volume to this document.

The relationships among and characteristics of key components in open computing
systems are shown below in Figure 3. Open System Model. In the diagram, two computer-based

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 10

devices are shown. Each has a hardware interface with which to communicate with other devices
via an information transfer mechanism across a media, e.g. copper, optical fiber, wireless, etc. In
this case, a request-response or “pull” situation, an invoking segment in one device, typically an
application computer program, requests information from a providing segment in another device
via a software application programmer interface (API). In this representation, both the software
API and the hardware interface are based on publicly accepted standards. The formats and
protocols are defined by the standard as is the expected response of the providing segment. The
possible use of multicast is optional but is sometimes useful, especially for situations where data
is to be “pushed” to multiple receivers simultaneously.

Standards play an essential role in open systems. They are the mechanism that insures
that systems do not become locked into a single vendor. Note that for this principle to be
effective, the standard should be widely accepted as well as formally recognized. The result of
incorporating open system principles into system architecture is that such systems fulfill the
following relationship:

Open Systems = Standard Interfaces + Defined Capability Interoperability + Ease of Change

Finally, in addition to upgrading engineering practices to design Naval Warfighting
Systems according to open system principles, it is necessary to define suitable metrics that
provide quantitative measures of the productivity and effectiveness of the open systems
approach. For example, standards compliance may be approximated by first-order estimation of
the ratio of standards-based APIs to total APIs. Time and effort needed to incorporate new
functions may be tracked and compared to historical data about similar activities. Numbers of
interfaces, especially multi-client server interfaces, may be compared to previous
implementations.

Figure 3. Open System Model

Invoking
segment

Providing
segment

S
o
f
t
w
a
r
e

A
P
I

H
a
r
d
w
a
r
e

I
/
F

H
a
r
d
w
a
r
e

I
/
F

S
o
f
t
w
a
r
e

A
P
I

Information
Transfer

Mechanisms
& Media

}
Standards-

based
protocols

Device Device

Standard formats
and methodsInvocation

Response

Possible
multicast Defined

capability

Defined
capability

Invoking
segment

Providing
segment

S
o
f
t
w
a
r
e

A
P
I

S
o
f
t
w
a
r
e

A
P
I

H
a
r
d
w
a
r
e

I
/
F

H
a
r
d
w
a
r
e

I
/
F

H
a
r
d
w
a
r
e

I
/
F

H
a
r
d
w
a
r
e

I
/
F

S
o
f
t
w
a
r
e

A
P
I

S
o
f
t
w
a
r
e

A
P
I

Information
Transfer

Mechanisms
& Media

}
Standards-

based
protocols

Device Device

Standard formats
and methodsInvocation

Response

Possible
multicast Defined

capability

Defined
capability

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 11

1.5.2 Open Architectures

Section 1.5 introduced a number of attributes of commercial open systems. While helpful
as organizing principles, these attributes do not, by themselves, constitute an architecture.
Architectures are specific, albeit high level designs that satisfy not only a system’s functional and
performance requirements but also any relevant non-functional goals – such as open systems
principles. Functional and performance requirements often determine how well or even if the
non-functional goals can be met.

To guide the design and development of an open architecture for new construction and
backfit ships, the following definition from OSJTF is adopted:

Open architecture: An architecture that employs open standards for key interfaces
within a system.

 — DOD Open System Joint Task Force

Any NWS architecture – whether open or otherwise – should first and foremost meet the
warfighting requirements of the warfare system. Fortunately, the state of computing technology
has advanced to the point where satisfying both is now possible. Key NWS domain attributes
and performance requirements include:

• Driven by external world events
• Wide dynamic range of processing loads
• High volume throughput of continuously refreshed data
• Low latency responsiveness to asynchronous events
• Hard real-time deadlines associated with periodics
• Computational paths traversing multiple components
• Soft real-time processing requirements
• High availability and survivability requirements
• Operator display and control requirements
• Information assurance requirements
• Safety and certification requirements

For the OA program, open architecture is the high-level technical structure of the NWS as
designed in accordance with the principles of open systems to achieve both real-time mission
requirements and life-cycle supportability goals. For mission critical systems, real-time
capability is often a dominant requirement. Computing characteristics, including hard real-time
and soft real-time viewpoints, are discussed in Section 3.2.2.10. Other technical characteristics
of OA include:

• Distribution of processing and the separation of presentation, application logic,and data in
order to minimize the coupling between them

• Widespread use of standards-based COTS computing technologies
• Functional capabilities implemented as medium-grain components
• Use of object oriented (OO) programming and/or structured programming constructs

within components and middleware technologies for interconnection of and

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 12

interoperation among components
• Use of design mechanisms such as client-server to maximize isolation of implementation

details from publicly visible services and APIs
• Portability and transparency of application components with respect to physical location

and network, processor and operating system types, etc.
• The appropriate use of design patterns and frameworks to facilitate best of breed

implementations
• Use of appropriate development tools during the design, implementation, and test phases

of the project

The corresponding goals of the OA are to provide to the NWS not only the benefits of
assured technical performance, but also of reduced life-cycle cost, affordable technology refresh
and reduced upgrade cycle time. Expected benefits include:

• Scalable, load invariant performance
• Enhanced information access and interoperability
• Enhanced system flexibility for accomplishment of mission and operational objectives
• Enhanced survivability and availability
• Reduced life-cycle cost and affordable COTS technology refresh
• Reduced cycle time for changes and upgrades.

With respect to survivability, an additional point should be noted. Although current
systems meets its availability requirement, the OA approach combined with the dynamic aspects
of shared resource management offer additional survivability benefits over those already present.
In fact, based on the Cost and Operational Effectiveness Analysis study for DD-21, a requirement
for resource management was written into the DD-21 Operational Requirements Document
(ORD).

1.5.3 Applicability of Standards and Guidance

The guidance contained in this document and the standards invoked in Open Architecture
Computing Environment Technologies and Standards, Version 1.0 applies to a variety of
systems. Primarily, it applies to PEO IWS warfighting systems. Furthermore, specific
compliance statements are contained in the just-mentioned Standards document. However, PEO
IWS systems are components of larger “systems of systems.” For this reason, the OA standards
may eventually be applied to non-PEO IWS systems. Defining the scope of applicability beyond
PEO IWS is the prerogative of the Assistant Secretary of the Navy for Research, Development
and Acquisition (ASN RD&A), and such scope will be defined in conjunction with the
promulgation of this document and its companion Open Architecture Computing Environment
Technologies and Standards, Version 1.0 document.

1.5.4 Managing Change with Standards and Middleware

Application functions change, paced by threats and missions. Computing technology will
change, driven by technological innovation and market pressures. Even standards change, albeit
at a slower pace. Unless applications are in some manner isolated from this change, system

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 13

upgrades and COTS refreshes will be expensive and time-consuming. Managing this change and
isolating its effects is the key to successful OA implementation. A number of strategies are
available for ensuring application portability with a minimum of change, see the table in Figure
4. Application Portability Strategies. Although all of these techniques may be used at times, the
primary OA technique for attaining long term isolation are use of standards and application
porting, discussed in Section 1.5 above. In addition, the OA approach makes use of a category of
support software known as middleware.

Middleware comes in two types - adaptation middleware and distribution middleware.
Technical details of these technologies are discussed in Sections 3.2.3.6 and 3.2.3.7 respectively.
A third type of support software, frameworks (see Section 3.2.3.8), provides higher level
functions such as thread management, commonly used components, etc. A fourth type, known as
Resource Management (RM), provides system management functions that are not strictly
middleware in nature but that, like adaptation and distribution middleware, provide vital services
in the composition of large systems. Dynamic Resource Management (DRM) is discussed in
Section 3.2.3.9.

Together, these four types of support software provide a synthesizing function that allows
applications in a distributed system to interface with each other and with the underlying
computing equipment and operating system. Figure 5. Managing Change with Middleware

Vendor lock
Slows migration
to standards

Low cost within
domain of use

Used to hide
non-standard
products

Software layer that hides a variety
of products below and exports a
common interface to applications

Wrappers

Not all products
exactly match
standards

Low or no cost if
porting within
standards family

Often used to
move from non-
standard basis
to standards

Moving applications from one set
of technology products to another
(e.g. OS, M/W) by changing APIs
within applications

Porting

Vendor lock
Market captive
Must upgrade

Readily available
products
OSJTF 2nd choice

Widespread in
practice, often
business-based

Use of commonly available non-
standard products, e.g. MicroSoft

Widely used
products

Still maturingHides details
May enable auto
code generation

Not yet widely
used but holds
great promise

Use of highly abstracted modeling
tools (e.g. UML) for design; source
code generated automatically

Model Driven
Architecture

Overhead
Architectural
obsolescence

Software does not
have to change to
new computer
type

May be used for
legacy and
obsolescent
systems

Software layer that makes one type
of computer appear to be another
type by “emulating” the missing
computer’s instructions

Emulation

Portable codeWidely used
with popular
Java language

Run-time interpreter of machine
independent version of source
code (e.g. Java byte code)

Virtual
machine

Standards do
change slowly,
must be tracked

Many vendors and
products
OSJTF endorsed

Basis for many
systems

Use of widely recognized
standards (e.g. international) to
ensure application portability

Standards
CommentsBenefitsUsageDefinitionMethod

Vendor lock
Slows migration
to standards

Low cost within
domain of use

Used to hide
non-standard
products

Software layer that hides a variety
of products below and exports a
common interface to applications

Wrappers

Not all products
exactly match
standards

Low or no cost if
porting within
standards family

Often used to
move from non-
standard basis
to standards

Moving applications from one set
of technology products to another
(e.g. OS, M/W) by changing APIs
within applications

Porting

Vendor lock
Market captive
Must upgrade

Readily available
products
OSJTF 2nd choice

Widespread in
practice, often
business-based

Use of commonly available non-
standard products, e.g. MicroSoft

Widely used
products

Still maturingHides details
May enable auto
code generation

Not yet widely
used but holds
great promise

Use of highly abstracted modeling
tools (e.g. UML) for design; source
code generated automatically

Model Driven
Architecture

Overhead
Architectural
obsolescence

Software does not
have to change to
new computer
type

May be used for
legacy and
obsolescent
systems

Software layer that makes one type
of computer appear to be another
type by “emulating” the missing
computer’s instructions

Emulation

Portable codeWidely used
with popular
Java language

Run-time interpreter of machine
independent version of source
code (e.g. Java byte code)

Virtual
machine

Standards do
change slowly,
must be tracked

Many vendors and
products
OSJTF endorsed

Basis for many
systems

Use of widely recognized
standards (e.g. international) to
ensure application portability

Standards
CommentsBenefitsUsageDefinitionMethod

* Primarily addresses portability across operating system and middleware products; modern processors are largely (but not
completely) abstracted by OS & M/W. Thus, portability at OS & M/W level supports processor & hardware independence.

Figure 4. Application Portability Strategies

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 14

illustrates the relationship of these software services to applications and to computing equipment
and operating systems.

Each of the categories in Figure 5 should, at times, undergo change. Application
programs, even those designated as common services, change as missions, threats, warfighting
capabilities and warfighting system technologies change. Computing equipment and operating
systems change as computing technologies evolve and improve. Furthermore, even though
middleware performs an isolation function, it too will change as the underlying computing
equipment and operating systems change. In fact, the middleware’s interface to the technology
base should change if applications are to be isolated from changes in the technology base.

Since middleware should change to keep pace with evolving computing technology, its
implementation and support are equally as important to overall life-cycle support considerations
as are the application computer programs and the computing technology base. The same ground
rules that apply to the computing technology base should apply to middleware. Middleware
should conform closely to standards whenever possible. Business considerations such as market
share, broad customer base, corporate stability, etc., are all valid considerations when selecting
middleware products and vendors.

In fact, it is far more effective from a life-cycle supportability perspective if middleware
is provided by the same commercial computing industry that also provides the remaining
computing technologies. In this case, that industry and its cost accomplish middleware change

Middleware isolates applications
from computing technology change

Adaptation
Middleware

Real-Time Operating System

Computing Equipment
ProcessorsDriversSwitchesCable Plant Cabinets

Application
Computer
Programs
(Domain
Unique)

Distribution
Middleware

R
e
s
o
u
r
c
e

M
a
n
a
g
e
m
e
n
t

COTS
Computing
Technology
(Standards

Based)

Frameworks
Middleware
(Standards

Based)

Common Services

App App App App

Figure 5. Managing Change with Middleware

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 15

and verification is shared among all customers using the technology. Otherwise, the cost of
change should be borne by the developer of the system. Furthermore, since the middleware
developer in this latter case is tied closely to a particular application domain, the likelihood of the
middleware evolving toward a specialized and non-standard set of functions is high. Note that it
is also highly desirable to have multiple standards-compliant implementations from which to
select. In the case of the standards chosen for OA, this is generally the case; see the OA
Technologies and Standards document.

1.5.5 Non-standard Products

Special discussion is appropriate for certain classes of products that support design and
development of easily modified complex systems but that do not adhere to the requirement for
public consensus-based, (or de jure) standards. Within the computing industry, a number of
products exist that are not standards-based but that nonetheless have widespread market
acceptance or confer certain compelling advantages to system designers, despite their lack of
standardization. Often such products constitute market-based (or de facto) standards, which have
benefits that cannot be overlooked. Potential exceptions to use of industry standards include the
following categories of products:

• Products conforming to emerging standards that have not been finalized but that appear
likely to do so

• Widely used products with a high degree of market acceptance and stability
• Widely used open-source products for which commercial support exists
• Non-standard products providing unique or otherwise unavailable functionality,

performance, flexibility or cost benefit to the Navy

While such products frequently offer enticing advantages, it is important to note that use
of these products may subsequently place system developers and acquisition managers in the
position of having no competitive alternative to the products chosen. For this reason, a sound
acquisition plan should require a thorough process for identification and justification of the need
for non-standard products as well as management review and approval of the use of such
products prior to initiation of development. When a standards-based product will serve equally
as well as a non-standards based product -- both in performance and in a business-case sense --
the standards-based product should be chosen.

1.5.6 Benefits of Open Architecture

Much of the information contained herein is the outgrowth of more than a decade of
shared technology and architecture evaluation and risk mitigation by the Navy, the Defense
Advanced Research Projects Agency (DARPA), academia and industry. R&D efforts have
focused on certain architectural concepts intended to foster life-cycle cost benefits, as well as
technical performance benefits. These concepts include:

• Open architectures
• Distributed processing
• Portability

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 16

• Scalability
• Modularity
• Fault tolerance
• Shared resource management
• Self-instrumentation

These concepts and their benefits are summarized below in Table 1. Architecture
Concepts and Benefits.

Table 1. Architecture Concepts and Benefits

Open architectures provide benefits with respect to lowered development and ownership
cost, rapid upgrades, and increased information accessibility. Distributed processing – as well as
the ability to apply it in a scalable manner – provides the computing power needed to deliver
required mission performance. Portability, one of the key aspects of open systems, reduces costs
by making upgrades and technology refreshes more nearly independent of the underlying
computing equipment and support software. As with any military system, fault tolerance is a
vital component of system availability and survivability.

Most of the architectural characteristics listed above have sufficiently widespread
antecedents to be obvious in their meanings. One possible exception is RM, the collection of
services and capabilities needed to manage the computing system from a resource consumption
perspective. This capability, along with the instrumentation needed to diagnose system health
and to assess corrective strategies, contributes to increased performance, mission flexibility and
availability. In effect, it constitutes a closed loop control system that dynamically adjusts
application use of computing resources to conform to system performance and availability
objectives in response to changing tactical stimuli and mission priorities.

Benefit/Concept Load

Invariant

Performance

Information

Access

Mission

Flexibility

Availability Reduced Cost Rapid

Upgrade

Open Architecture X X X

Distributed X X X X X

Portability X X

Scalability X X X X

Modularity X X

Fault Tolerance X X

Shared Resource
Management

X X X

Self-Instrumentation X X X

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 17

Although not explicitly addressed in the discussion above, software reuse is an additional
factor meriting strong consideration during definition of the OA implementation. Reusability
may be achieved by a variety of methods, (e.g., by definition of reusable libraries and by means
of application code segments designed for incorporation into multiple larger structures). Object-
Oriented (OO) technology (where real-time efficiency requirements permit) provides a very
capable framework for such reuse, though OO techniques are by no means mandatory for the
achievement of reuse goals.

1.6 Open Architecture Documents

This volume is one document in a set of documents describing Open Architecture
processes, technical characteristics and capabilities. Each document addresses a different aspect
of OA development and oversight. The full document set is enumerated in Table 2 below along
with planned release dates.

Document Title Planned Release
Open Architecture Computing Environment Design Guidance, Version 1.0 September 2003
Open Architecture Computing Environment Technologies and Standards,
Version 1.0

September 2003

Open Architecture Process Description, Version 1.0 March 2004
Open Architecture Functional Description, Version 1.0 March 2003
Open Architecture Computing Environment Description, Version 2.0 September 2004
Open Architecture Application Design Guidelines, Version 2.0 September 2004

Table 2. OA Document Set

This document contains two major technical guidance sections. The first, section 3.2.2,
Component Design Guidance, provides guidelines useful for constructing real-time distributed
warfighting application computer programs. The second, section 3.2.3, Open Architecture
Computing Environment, provides a description of the technology base to be employed in
conjunction with OA warfighting systems. Based on initial industry and government feedback, it
is anticipated that this document will be rewritten as two separate documents. The current
section 3.2.3, Open Architecture Computing Environment will be developed as a separate
document and be re-titled, Open Architecture Computing Environment Description, Version 2.0.
The current descriptive content will be augmented with the addition of requirements information.
This rewritten capabilities document will define computing metrics and enumerate required
functionality and performance capabilities of the OACE as a computing infrastructure. The
current section 3.2.2, Component Design Guidance will be recast in technical report format, and
it will describe principles of distributed system design applicable to warfighting systems that fall
within the scope of OA. Thus, the current section 3.2.2 should be treated as non-binding
guidance. The new document will be titled Open Architecture Application Design Guidelines,
Version 2.0. Thus, the two documents identified as Version 2.0 are, in reality, a subdivision of
the current Version 1.0 document and replacement with two separate documents reflecting two
distinct technical domains.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 18

1.6.1 Document Overview

Section 2, “Applicable Documents,” provides applicable mandates and directives that
trace down to the guidance addressed in this document. Section 3, “Open Architecture
Guidance,” provides the characteristics of the system that will eventually be required for its
acceptance.

Within Section 3, application design guidelines are contained in Section 3.2; design
patterns are discussed in Section 3.2.1. Actual component design guidelines are discussed in
Section 3.2.2. The Open Architecture Computing Environment (OACE) and its technical
characteristics are discussed in Section 3.2.3. Synthesis of the system from its component parts
is discussed in Section 3.2.4. Display system architecture issues are discussed in Section 3.2.5.
System test and certification issues are discussed in Section 3.2.6. Finally, selection of standards
is discussed in Section 3.2.7.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 19

2 APPLICABLE DOCUMENTS

The following documents are technical publications, directives, official correspondence,
or instructions that affect the guidance put forward in this document.

a) “Department of Defense Joint Technical Architecture”, Version 4.0, 17 July 2002.

b) ASN (RD&A),”ASN (RD&A) commitment to Congress to completely phase out
AN/UYK-43 computers by FY 99 ships”, letter, 1 December 1999.

c) “Baseline 7 Ships Characteristics Improvement Board (SCIB) Report”, November
1992.

d) Bertrand Meyer, “What to Compose,” Software Development Magazine, March 2000.

e) Chief Naval Operations (CNO) LTR 3900 ser N865G/4U652928, 22 July 1994.

f) Christopher Alexander, Sara Ishikawa, Murray Silverstein, A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, 1977.

g) CNO LTR ser N864/6U656004, 21 November 1995.

h) CNO LTR ser N865G, “Aegis Combat System Baseline Plan: Annual Update”, 21
December 1996

i) DISA, “Common Operating Environment (COE) Integration and Runtime Specification
(I&RTS)”. Version 4.2, February 2002.

j) DoDD 5000.1 of 12 May 2003, “The Defense Acquisition System”.

k) DoDD 5000.2-R of 10 June 2001, “Mandatory Procedures for Major Defense
Acquisition Programs (MDAP) and Major Automated Information Programs (MAIS)
Acquisition Programs”.

l) DoN CIO Memorandum, “DoN Policy on the Use of Extensible Markup Language
(XML)", 13 December 2002.

m) DoN CIO, “DoN XML Developer’s Guide”. October 2001.

n) DoN CIO, “Information Technology Infrastructure Architecture (ITIA)”. Version 1, 16
March 1999.

o) DoN CIO, “Information Technology Systems Guidance (ITSG)”. Version 1, 1999.

p) Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal.
Pattern-Oriented Software Volume 1: A System of Patterns. John Wiley & Sons, 1996.

q) Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann. Pattern-Oriented
Software Architecture Volume 2: Patterns for Concurrent and Networked Objects

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 20

Software Architecture Volume 2: Patterns for Concurrent and Networked Objects.
John Wiley & Sons, 2000.

r) Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

s) Extensible Markup Language (XML) 1.0, W3C Recommendation, 6 October 2000.

t) Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal.
Pattern-Oriented Software Architecture Volume 1: A System of Patterns. New York,
New York: John Wiley & Sons Ltd., 1996.

u) “Guidance Document for Aegis Baseline 7 Phase 1 and II Specification Development:
Information Architecture and Baseline Applicability”. Version 1.0, 20 March 1998.

v) IEEE Std 1003.1-2001. Base Definitions - Portable operating system interface (POSIX)
base definitions, Issue 6, 2001.

w) ISO/IEC 8652:1995, “Ada Programming Language”, 1995.

x) ISO/IEC 9899:1999, “C Programming Language”, 1999.

y) ISO/IEC 14882:1998, “C++ Programming Language”, 1998.

z) “JavaTM 2 Platform Enterprise Edition (J2EE) Specification”, Version 1.3, July 2001.

aa) Object Management Group, “Common Object Request Broker Architecture
(CORBA)”, Version 2.6.1, May 2002.

bb) Object Management Group, “OMG Unified Modeling Language Specification”,
Version 1.5, March 2003.

cc) PEO TSC 4890.1, “Commercial Item and Non-Developmental Item Selection,
Acquisition, Integration, and Life-cycle Support Policy”,

dd) RADM Murphy Briefing, “Surface Warfare Road Map”, August 1996.

ee) SECNAVINST 5200.32A, “Acquisition Management Policies and Procedures for
Computer Resources”.

ff) Secretary of Defense, “To meet future needs DOD should increase access to
commercial state-of-the-art technology”, Memorandum, 29 June 1994.

gg) White Paper, “Forward From the Sea”, 19 September 1994.

hh) Open Architecture Computing Environment Technologies and Standards, Version 1.0,
September 2003

ii) Open Architecture Process Description, Draft, August 2003

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 21

jj) Open Architecture Functional Description, Draft, July 2003

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 22

3 OPEN ARCHITECTURE GUIDANCE

The Navy intends to implement warfare systems that meet operational performance
requirements and that are affordable. System affordability may be best achieved by
implementing application computer programs in an open fashion on computers that are in the
mainstream commercial market. The mainstream commercial marketplace typically offers a
diversity of vendors, produces large quantities of products, and offers the products at competitive
prices. The word mainstream is critical. A niche market COTS product, or one whose
commercial future is uncertain, lacks most of the desirable properties stated in Section 1, even if
it is driven by formal standards.

Open Architecture acts as an enabler, allowing extension of processor homogeneity (see
Section 3.2.3.3) throughout the NWS, thus allowing for the pooling of processor resources to
realize the benefits associated with fully distributed computer programs. These benefits are
increased scalability, improved fault tolerance and reduced logistics infrastructure.

3.1 Technical Overview

The NWS will transition from a closed architecture to one based upon open system
design principles, outlined in Section 1.5. Requirements for increased processing, memory,
performance, and interconnectivity to support cost effective incorporation of these and future
capabilities dictate this transition.

In the case of new construction combined with new requirements, the transition to the
highly modular open design will be direct; modern design principles will be employed from
initial design onward. In the case of backfit and legacy system conversion, business case analysis
will to a significant degree dictate what can be done and at what pace. Some systems,
particularly at the periphery of the combat system (primarily sensor and weapon systems) may
experience little if any change other than perhaps at the interface. Such systems might be called
“legacy for life.” In the case of core sensor control, command and control and weapons control,
the need to make more substantial modifications over time is greater—the primary reason being
to promote source code commonality across ship classes and platform types. Sensors and
weapons provide less opportunity for code sharing and reuse; thus, there is considerably less of a
business case to expend the funds necessary to incorporate modern modular design principles.

The scope of the re-designed NWS includes the underlying technology base, as well as
the applications themselves. The OA design will be built on an infrastructure of technologies
that include cable plant, cabinets, network components, processors, operating systems, adaptation
and distribution middleware, frameworks, resource management and other services. This
infrastructure is referred to in this document as the Open Architecture Computing Environment
(OACE). OACE (as described in Section 3.2.3) will allow the Navy to introduce and change out
commercial technology to maximize affordability and performance goals. Figure 2, introduced
earlier, illustrates the relationship of various technology components and the applications they
support.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 23

3.1.1 Functional Partitioning

The starting point for OA development process is a partitioning of NWS functionality
that will create a new component-based logical architecture no longer limited by design
constraints arising from the previous generation of computing technology, as reflected in the
current element-based architecture. The selection of partitioning boundaries will be accomplished
by examining the entire NWS functionality set during the design stage. However,
implementation may be accomplished in phases consistent with funding availability. Due to
constraints imposed by the legacy architecture, selection of implementation phases should
necessarily take current element boundaries into consideration.

The logical architecture will be defined so as to incorporate all specified NWS
capabilities and requirements. These capabilities are defined by the appropriate Operational
Requirements Documents (ORD) and by the relevant Combat System Specification
Requirements. The details of these requirements and specifications are the responsibility of
individual Programs of Record and are thus not exhaustively cited here.

The functional architecture should be as technology-neutral as possible. The purpose of
this approach is to ensure that long-term supportability goals are met. Only after the functional
architecture is defined should an effort be made to define areas where code reuse is possible.
Implementation will utilize best commercial design and development practices and state-of-the-
practice technologies consistent with NWS mission requirements.

Component boundaries and interaction requirements will be established in conjunction
with and consideration of timing and performance characteristics. The implementation and
deployment architecture will be established by finding the best technology that satisfies overall
design objectives. The implementation architecture deals with technology choices and grouping
of components to minimize delays or latency based on the technology constraints. Subsequent
new construction and backfit efforts will use the same architectural framework to select new
technologies. This allows the components to be reallocated as technology constraints change.

3.1.2 Computing Characteristics

The OA functional partitioning should support insertion of new capabilities not
previously affordable, in part because it will be possible to add new capabilities on a shorter and
lower cost upgrade cycle than in the past. This is, in substantial measure, true because
information within an open NWS implementation will be much more readily available than in
current deployed systems. The use of networks, client-server implementations, general purpose
computing equipment and services, etc. allows convenient access to the information and
computing resources needed to incorporate new functionality. This, in turn, has the potential to
provide a computational base for increased automation in support of manning reduction.

NWS communications will be based on LAN technologies. Limited Navy Tactical Data
System (NTDS) legacy interfaces will continue to be supported. However, where feasible,
NTDS legacy interfaces should be transitioned to the OA LAN-based architecture. This
transition may not be cost effective in many cases. But, in some cases the use of hardware

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 24

adapters that convert NTDS channels to LAN connections may be possible. In such cases, the
NTDS device effectively becomes part of the network.

OA does not relieve NWS integrators from meeting all ship environmental requirements.
Mission critical enclosures will house commercial-based advanced processors, network, and
conversion equipment. The legacy equipment footprint may be retained for backfit platforms
where a cost benefit case cannot be made for ship design changes. In that case, the number and
placement of enclosures, as well as inter-compartment cabling, will remain fixed. Where it is
cost effective to change cabinet and cable configurations and is beneficial to do so, such changes
should be considered. In any case, the NWS computing capability should be capable of
uninterrupted operation under battle conditions that include but are not limited to shock, fire, and
salt water spray. This should be accomplished in a manner that is survivable, maintainable, and
affordable.

3.1.3 Federated vs. Integrated Architectures

It should be acknowledged that the OA goal of commonality is, to some degree, in
tension with providing maximum flexibility of choice to acquisition managers. Traditionally,
warfighting systems have been assembled as collections of systems and subsystems, each
separately and independently developed using its own choice of computing resources—i.e. a
“system of systems” approach. However, a major new trend in computing system operations has
emerged—enterprise management. Enterprise management allows an entire set of application
computer programs to be managed as a whole on a unified set of computing resources—
resources that are often shared interchangeably among applications. The notion of resource
management, perhaps dynamically and in near-real-time, is an integral part of enterprise
management

Given that the technology of enterprise management is relatively new, questions arise as
to how much and how soon and in what circumstances it should be adopted for mission critical
and real-time systems. The following sections discuss the tradeoffs involved and the policy
adopted by OA for insertion of the concept of dynamic resource management (DRM).

3.1.3.1 Federated Approach

The term, “federated” is used to describe the traditional approach where selection of
computing technologies is minimally restricted for developers. In the federated approach, each
system developer chooses processors, operating systems, middleware and other infrastructure
components without regard to other system components. In this case, resources are dedicated to
the subsystem, and there is little if any opportunity for resource sharing. An oft-claimed
advantage of the federated approach is that it appears to allow maximum flexibility to meet
stressing or system-unique requirements through selection of leading edge technologies.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 25

3.1.3.2 Integrated approach

The term “integrated” is used to describe an enterprise managed approach that makes
maximum use of commonality, both at the physical level and at the functional level. Thus, the
total ship computing concept is, by definition, an integrated approach. The integrated approach
uses a common resource base to create a pool of computational resources that serves many, if not
all application needs. Applications that run within this pool of resources must be built so that
they are not uniquely mapped to a particular processor or network IP address. (Most modern
middleware implementations support this location transparency feature via a name service
component.)

This shared resource approach is a key component of the concept called total ship
computing (TSC). For new construction (and backfit were possible), the TSC “pool-of-
computers” approach allows any computer program to run on any available processor – subject to
limitations imposed by high performance real-time requirements. Fault tolerance and
survivability will be based on an N+M redundancy scheme, where N is the number of processors
required to perform mission computing tasks and M is the number of spare processors.

Furthermore, the use of a “pool-of-computers” architecture for the resource base,
combined with the application of resource management, , enables mission flexibility through
ship-wide operational resource sharing and enhanced failure recovery through a high degree of
redundancy. This service is available to all systems that are able to participate in the integrated
approach, but it does not preclude employment of the federated approach, even within an
integrated system, for subsystems whose requirements suggest otherwise. It also has the
potential to change the approach to shipboard computer system maintenance. It may be possible
to substantially reduce shipboard computer maintenance by capitalizing on the fact that
application components are not bound to computer locality but instead are free to migrate to
available processors under RM control. Reduction of shipboard maintenance should lead to
reduced manning.

3.1.3.3 OA Guidelines

Individual acquisition programs have frequently enforced the integrated approach within
their own scope of control but have objected to its application to them from without. In part, this
state of affairs reflects the difficulties of making “one size fit all,” notwithstanding the benefits of
commonality. The approach chosen for OACE is to encourage standards-based family similarity
of computing resources across all PEO IWS systems by making commonality beneficial—but
without requiring absolute conformity to exact product selections.

It is expected that the integrated or total ship computing approach will first be adopted for
new construction efforts such as DD(X) and that backfit upgrades will continue to use the
federated approach for some time to come. The integrated TSC approach appears in the DD(X)
Operational Requirements Document (ORD). For that reason, it should be considered a DD(X)
requirement. Its adoption for other ship classes, particularly for backfit purposes, will be the
result of a cost benefit analysis in each case.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 26

Note, finally, that the terms integrated and open are not synonymous. Generally, the term
open is more likely to invoke the expectation of a federated approach rather than an integrated
one. However, an integrated approach is consistent with the principles of open system design so
long as a framework of established standards is used; see Section 1.5 Open Systems and
Standards. For integrated systems, the adoption of a shared resource base is a design decision
made in the interests of enhanced mission flexibility, survivability and maintenance free
deployments.

3.1.4 Implementation Constraints

OA represents an opportunity to reinvigorate the performance and maintainability of
NWS with a new functional allocation, a computing architecture and mainstream standards-based
computing technologies. Likewise, the investment in physical design and construction of the
surface combatants should be considered. Thus, while it is possible to change computer
programs, and even network and processor components, without impacting ship construction, it
is considerably more difficult to change cabling and cabinetry. For this reason, once the best
technical design is identified, cost-benefit tradeoffs will evaluate any proposed physical design
changes that may impact physical ship construction and modernization costs and schedules.

With the above caveat in mind, Table 3. OA Constraints lists the initial OA design
constraints. In the table, the term “mainstream” captures an important concept that contributes to
achieving OA objectives. Generally, it connotes the idea of product lines with large market
shares, extensive user base, readily available support and vendor stability. Standards bodies
embraced for the OA initiative include but are not limited to Telecommunications Industry
Association (TIA), Internet Engineering Task Force (IETF), Object Management Group (OMG)
and the IEEE’s Portable Operating System Interface (POSIX) standard group.

The guidance in this document applies to both new construction and backfit. In the case
of backfit ships and warfighting systems, some constraints may necessarily apply. For instance,
the Open Architecture Computing Environment Technologies and Standards, Version 1.0
document defines five OACE compliance levels:

• Level 1 - Hardware adapters
• Level 2 - Adaptation layers
• Level 3 - OACE standards
• Level 4 - OA common services and functions
• Level 5 - Total ship Computing

The first two describe characteristics of legacy systems and are not OACE compliant. The
last three are fully OACE compliant. It is unlikely that level 5 will be applied to backfit
platforms. However, a minimum of level 3 compliance to OACE standards is required for all
common services and functions in order to enable the reuse of these functions across ship classes
and warfighting systems. Components within subsystems that use common services or common
functions should also comply with the level 3 requirement.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 27

Table 3. OA Constraints

3.1.5 Development Processes and Tools

Effective processes methodologies and tools are critical to the success of large scale
engineering projects. Key characteristics of the incumbent process include a strong emphasis
on firm definition of requirements prior to design and coding as well as a formal design review
process involving Navy buy-off at every stage of the development. When required warfighting
changes were extensive in scope, EDMs usually preceded production development as a means of
risk mitigation – the latest of which will be an OA EDM.

The Object Oriented (OO) design method did not originate in the real-time community,
but it has matured to the point where the performance characteristics of OO computer programs
are, in some cases, adequate to meet real-time requirements. The OO approach not only supports
critical OA objectives, such as affordability and time-to-market, but also represents state-of-the-
practices among trained engineers within the pool of likely OA implementers. Where OO
technology does not support real-time requirements, its use should be avoided.

System Domain Constraints

Cable Plant Use TIA standards-based COTS cabling technology when possible

Enclosures Use enclosures capable of providing non-mil-spec environment for
mainstream COTS components

User interface devices Use consoles, displays and other user interface devices consistent with
Navy acquisition processes

Networks Use mainstream IETF standards-based COTS network technology

Computers Use mainstream COTS products, e.g. single board computers, servers,
blades, storage systems, etc.

Operating systems Use mainstream POSIX standards compliant operating systems

Middleware Use mainstream OMG standards based middleware

Resource mgt. Implement NWS-wide static and dynamic capabilities

Common services Implement common support services as system server applications
(e.g., time services, data extraction, navigation data distribution, web
servers, application servers, RDBMS servers, etc.).

Application design Redesign and/or refactor tactical applications (as required) as
components in accordance with open systems concepts outlined in this
guidance document. Use mainstream COTS and open source
development tools.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 28

Given this situation, the time has come to update processes, methodologies and tools to
the current generation as a part of OA development.

The new spiral approach is far more inclusive and graphically oriented than previous
approaches, due in no small measure to the degree of automated and collaborative design that is
now possible. Unified Modeling Language (UML) and OO allow engineers to express and
capture requirements and design in a readily transportable and interchangeable form. Web-based
Integrated Data Environments (IDEs) provide immediate access to project artifacts. When
coupled with a management philosophy that promotes early and broad access to intermediate
products by Integrated Product Teams (IPT) via the IDE, this approach allows maximum
visibility to implementers and customers alike.

Not withstanding the advantages of new tools and methods, perhaps their most important
advantage is the ability they convey to overlap requirements setting, system engineering, design
and implementation successfully. In the past, substantial parallelism across these stages was
considered off process and was often not formally allowed. This resulted in delaying program
direction changes in response to problems uncovered during development, with consequent
schedule and cost disruption when such problems were inevitably encountered. However, where
tools permit and where traditional engineering rigor and discipline are sustained, such overlap
provides a useful mechanism for identifying and addressing problems early in the development
cycle.

Having stated the preceding benefits of new tools, understanding how the process should
be applied is important if these benefits are to be achieved. Two criteria for selection of
candidates for early definition and prototype implementation include high-risk capabilities and
foundation functionality. Each has its merits. In the case of high-risk functions, the benefit is
obvious. The more time and effort devoted to resolving risks, the more likely is overall project
success. Likewise, foundation functionality is capability upon which subsequent system
operation should depend. Examples include technology-based infrastructure components, such
as networks, operating systems, and middleware and resource management; and core system
functionality, such as track management and common tactical picture.

The traditional structured approach to system engineering and design might reasonably be
characterized as “top-down” and “breadth-first”, with a major focus on a sequential
customer/developer review and approval process exercised on a step-by-step basis. By contrast,
the new approach is simultaneously top-down but with “depth-first”, or even “bottom-up”
excursions in critical risk and foundation areas. The new process also includes a major focus on
system architecture. In summary, the new methods and tools enable a more fine-grained and
risk-aware development process without implying or demanding compromise of the disciplined
top-down approach that is integral to successful large-scale system engineering endeavors.

3.2 Application Design Guidance

The technical guidance points discussed herein describe certain critical technical
application design characteristics that support OA; therefore, they are a primary content of this
guidance document. However, they may differ in certain aspects from a more general description
of open systems since these attributes might be applicable to a broad base of non-real-time and

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 29

non-mission critical applications. Where appropriate, these differences reflect the more stringent
requirements of real-time mission critical systems.

The component design guidance contained in this section is presented for technical
informational purposes and is not to be construed as contractually binding unless so designated
by separate mechanism.

The level of detail provided in the following sections is, in general, below that associated
with requirements. The intent of the guidance is to characterize design techniques that have
proven successful in other systems and prototypes comparable in complexity and/or stressing
requirements to NWS, e.g. commercial, business, financial, medical, telecommunications, and
process control applications, to name a few. Unless otherwise noted, guidance alternatives are
not necessarily all-inclusive. Thus, additional implementation possibilities may exist.

Section 3.2.1 introduces the concept of design patterns; i.e., ways of building software
that are useful in many different forms across a wide variety of applications. Technical guidance
for OA is divided into two categories: the attributes of application computer programs and the
attributes of the underlying technology base. Section 3.2.2 provides a detailed discussion of
component design characteristics and constraints. Section 3.2.3 covers the characteristics of the
underlying technology base. Table 4. Application Design Guidance Index provides an index to
each discrete guidance item in the document.

Table 4. Application Design Guidance Index

Category Paragraph Page

Component design 3.2.2.1 32
Portability 3.2.2.2 40
Location transparency 3.2.2.3 42
Client server 3.2.2.4 44
Data distribution 3.2.2.5 48
State data coherency 3.2.2.6 51
Computational flow 3.2.2.7 52
Fault tolerance 3.2.2.8 54
Scalability 3.2.2.9 59
Real-time performance 3.2.2.10 64
Process, thread & memory management 3.2.2.11 69
Data Brokers 3.2.2.12 71

3.2.1 Architecture and Design Patterns

Patterns are widely useful reusable rules and methods for building components and
systems, including open systems. Architecture patterns constitute high-level structures
appropriate to design of major segments of software, such as computer programs and
components. They may foster key open system properties such as code reuse, flexibility of
design, enhanced interoperability, etc. Design patterns are a more detailed and discrete
templates. The following definition of patterns comes from Alexander (1977). Although it deals

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 30

with patterns in buildings and towns, nonetheless, its generality makes it highly applicable to
computer systems as well.

“Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a
way that you can use this solution a million times over, without ever doing it the
same way twice.”

Extending this definition, designers Gamma, Helm, Johnson and Vlissides state the
following in their book, Design Patterns: Elements of Reusable Object-Oriented Software: “[A]t
the core. . .of patterns is a solution to a problem in a context.” They list the following four
characteristics as the essential elements of a pattern:

• “The pattern name is a handle we can use to describe a design problem, its solutions,
and consequences in a word or two. Naming a pattern immediately increases our design
vocabulary.”

• “The problem describes when to apply the pattern. It explains the problem and its
context.”

• “The solution describes the elements that make up the design, their relationships,
responsibilities, and collaborations.”

• “The consequences are the results and trade-offs of applying the pattern.”

Certain important design patterns recur in open systems. The patterns listed below, as
well as the tools required in their construction (largely middleware) have shown that they have
value in the real-time weapon system problem domain. They will be discussed in more detail in
subsequent sections. In many cases, application components may exhibit aspects of more than
one pattern. The key patterns include:

• Client-server patterns
• Distribution patterns for continuously refreshed data
• State data coherency maintaining patterns
• Computational data flow patterns
• Replication patterns for fault tolerance
• Peer-client replication pattern for load-sharing and scalability
• Inter-component adaptation patterns (e.g., brokers, translation layers)

Patterns describe a particular way of solving a problem. A pattern may be a high-level
abstraction of a solution, such as client-server, or it may be a very detailed recipe for solving
certain classes of problems. Patterns may be presented in different forms. They may be
described with detailed written specifications. UML class diagrams and object models are often
used to convey patterns. Detailed constraint models, sufficiently rigorous to describe all
conditions, processing, and outputs have also been employed as pattern languages. In any case,
the pattern is definitely a solution and not just a description of the desired result or the
environmental constraints.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 31

3.2.2 Component Design Guidance

The term, component is broadly defined. It may refer to service libraries, widely
applicable domain-specific classes, compiled and linked executable programs or entire
subsystems. In OA, those components that form application computer programs should be
implemented as loosely coupled software components. Each such component is a separately
compiled and linked executable computer program, or process in POSIX operating system
terminology. Loosely coupled means that these programs communicate with each other via an
explicit message passing or distributed object invocation mechanisms. The contrasting case,
tightly coupled, means that communication takes place via explicit reference to shared memory.
In a full OA implementation, a large-scale infrastructure of processors, networks, and services
supports the distribution and execution of application components such that both scalable
performance and system fault tolerance are achieved.

It should be noted that the component design guidance contained in this section does not,
in fact, constitute mandatory requirements but rather reflects, to the greatest degree practical, a
description of the current state of the practice as far as designing distributed mission critical
applications. Thus, this section is primarily tutorial in nature. The focus is necessarily on
architecture patterns (design techniques and templates) that provide real-time performance,
efficient use of computational resource, fault tolerance, etc. However, the use of these guidance
principles is readily extensible to less than real-time requirements as well. It should be noted that
in the latter case, new web service based design techniques are being widely employed in
commercial and business applications. In the case where non-real-time applications must
interface with real-time mission critical applications, guidance remains to be developed that will
suggest suitable interface techniques.

Attributes of the OA application computer programs are listed below and described in the
subsections that follow.

• Functionally distinct self-contained applications or components, usually modest in size
• Components loosely coupled in space and time with other components
• Applications built for portability and location transparent allocation and operation
• Client-server design patterns with push and/or pull interfaces
• Mechanisms for distribution of continuously refreshed data
• Maintenance of state data coherency in components with composite state
• Computational flow and multi-component paths
• Multiple fault tolerant design patterns (active, passive and hybrids)
• Scalability via load-sharing peer-client design pattern
• Quality of Service (QoS) mechanisms for support of both hard real-time and soft real-

time requirements, possibly collocated
• Multi-threaded applications (I/O, periodics, etc.) with threads not hard mapped to Central

Processing Units (CPUs)
• Pre-allocation of computing resources (memory, processes, threads, etc.) at application

initialization
• Mechanisms for preservation of data integrity (correctness and resistance to disruption)

across threads, processes, computers and networks

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 32

• Asynchronous processes with timed/fixed packet I/O buffering
• Push distribution (forward caching) of track data to consumers
• Data broker/adapter design patterns for legacy capture
• Any-operator, any-console display architecture

In the above list, the term QoS describes various properties associated with providing
varying degrees of assurance that requirements will be met. QoS properties are generally
controlled via mechanisms embedded in either the operating system or the network protocol
stack (including not only computer resources but also network equipment such as switches and
routers). For real-time applications, this may include use of operating system priorities to insure
timely wakeup of periodic processing threads as well as use of network bandwidth reservation to
insure timely message delivery. Analogously, non-real-time applications may be run at low
priority and without bandwidth reservation to insure that such applications do not monopolize
system computing resources at the expense of high priority real-time applications. This is
particularly important where both types of applications may be collocated on the same processor.

The attributes of the technology base needed to support these application component
attributes are described in Section 3.2.3. For the OA, the following global guidance should be
incorporated into each tactical component, as applicable: all NWS functions should be
implemented as distributed components designed specifically for the OA computing
environment. Individual attributes are discussed in Sections 3.2.2.1 through 3.2.2.12.
Specifically, hard real-time and soft real-time characteristics are discussed in Section 3.2.2.10

3.2.2.1 Component Design

This section provides rationale and requirements for partitioning NWS functional
capability into medium-grain, functionally homogeneous, loosely coupled code units or
components that are suitable for distributed processing.

3.2.2.1.1 Description

A key concept in structuring application computer programs for incorporation into OA is
the advantageous partitioning of system functionality into code units, or components, that are
easy to change and to interoperate with over the life-cycle of the system. In this characterization,
a component is a physical replaceable software entity or element that performs defined functions
and encapsulates data. A component is a distinct, separable and uniquely identified constituent
part of a system, with well-defined boundaries, capabilities and interface to other system
components. Note that, conceptually, components may be either hardware or software. However,
in this context, only software components are intended. Both processes and libraries may qualify
as components.

Middleware plays a key role in designing modern software components, particularly for
distributed object computing (DOC). The standard chosen for OA DOC middleware is the
Object Management Group’s (OMG) Common Object Request Broker Architecture (CORBA);
see Open Architecture Computing Environment Technologies and Standards, Version 1.0. One

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 33

of the major features that makes the CORBA standard attractive for OA use is the fact that it
supports application software portability between different middleware vendors.

3.2.2.1.1.1 Utility of Components. Components provide access to encapsulated
functions and data via well-defined interfaces, and they exhibit predictable behavior.
Components are usable by multiple heterogeneous clients without modification. Usually,
process-based components are defined along boundaries that facilitate loosely coupled
communications with other components. Moreover, the scope of a component should usually
represent a lowest common denominator of capabilities, such that little, if any, further
decomposition can be performed on the functionality while still preserving the loosely coupled
character of the component and without introducing significant adverse affects on the efficiency
and performance of the system.

Components are used to compose larger aggregations. Loosely coupled components can
be joined together to create composite services, even if they have been implemented using
different technologies, as long as they have a clear, well-defined API and common mechanisms
to invoke that API. The entire set of components aggregated for an overall purpose constitutes a
system. However, smaller collections of components often arise as well. These smaller
collections may have a degree of functional unity and utility that merit separate identification and
tracking. Such collections of components are referred to as subsystems. One example would be
a data extraction and recording subsystem, which itself may be composed of a number of
separable components. Just as components may be part of multiple systems, so subsystems may
also be constituent parts of multiple systems.

If a software element is understood generally as any collection of software built for a
specified purpose, the notion of components introduces constraints on the choice of boundaries
and structure – constraints that are intended to foster ease of composition, reuse and other
supportability metrics. Also central to the notion of a component is the concept of durability.
The durability metric suggests that functionality, Application Programming Interfaces (APIs) and
inter-component interfaces should change little over time and throughout repeated functional
enhancements to other system components. The term, stability is sometimes used synonymously
with durability, but since stability is also used to describe performance characteristics, the term
durability is chosen in order to remove ambiguity.

Granularity is defined as the relative size, scale, level of detail, or depth of penetration
that characterizes a software object or method activity. Component granularity can be viewed in
two ways:

• A software component can be either coarse grained or fine-grained depending upon how
much functionality is included within the component structure. Sometimes component
granularity is characterized by the number of tasks it performs with fine grained
performing a single task and course grained performing multiple tasks. Generally
business components are more coarsely grained (e.g. databases) while infrastructure
components that provide lower-level applications services (e.g. file access), are fine
grained.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 34

• A software component can also be characterized as course grained or fine-grained
depending upon the information access with the amount of information supplied by a
software component.

Component granularity is a key design issue. From a functionality viewpoint, the benefit
of a finely grained component is the generally greater decoupling provided with potentially
greater reuse. From a data access viewpoint, the benefit of a course grained component is the
performance improvements gained by reducing the amount of processing required for container
interceptions, data marshalling/demarshalling, and the additional network traffic. However, this
also potentially provides a client with too much access and a potential security problem if secure
data/methods may be opened up with this level of granularity.

When properly designed, components have a number of key advantages. They facilitate
construction of reusable code units that can be inserted easily into a wide variety of systems
without requiring knowledge of the internal implementation of the component. Furthermore, the
stable component interface facilitates the evolution of a system through specialized, extended
elaborated or optimized versions of the component.

3.2.2.1.1.2 Composing Systems with Components. According to Bertrand Meyer
(2000), “the two basic conditions for a software element to be considered a component are that it
be:

• Usable by other software elements. This excludes a program in the traditional sense that
is meant to be used by humans or non-software triggers – unless it has been
componentized, meaning precisely adapted for use by other software.

• Usable by software elements, (whose) authors are unknown to the component's authors.
This excludes the case of routines, classes and other software elements used by other
parts of the same software. A component should be of interest to a broad range of
‘clients’ not directly connected to the original authors.”

The preceding points have direct applicability to the OA initiative in that OA has as a
major objective getting to a point where the Navy “buys once” and reuses components across
multiple ship classes. In any case, according to the author, “These requirements, modest as they
may seem, immediately lead to several others.” Among them are the following:

• A component should include a specification of all its dependencies: hardware and
software platform, versions and other components. Otherwise new clients will not be able
to make good use of the component without going back to the original author.

• For the same reason, a component should provide a precise specification of the
functionalities that it offers.

• The component should be usable on the sole basis of that specification, without access to
non-interface information (such as the source code even if it is available). This leads in
particular to the information hiding requirements.

• Components should be composable with other components, since a single component is
not very exciting and certainly does not justify talking about component-based
development. In practice, this means that a good component will usually be part of a

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 35

more general component framework with a clear overall architecture, style and standard
design patterns. [emphasis added]

• The process of integrating a component into systems should be fast and smooth.

With regard to the composability characteristic above, it should be noted that integration
of a component that supplies a new service requires creation of new clients and will always take
longer than integration of a new client or a server that takes over an existing interface. In any
case, components are usually loosely coupled to other components (i.e., communicate via
message passing); however, they may be tightly coupled internally via shared memory if system
performance needs so require. Based on the preceding discussion, component requirements
include the following:

• A well-defined behavior that is reflected through services offered the component

• Encapsulation of the data that is managed by the component

• A well-defined and durable interface through which services are obtained.

In OO design technology terminology, active components may be loosely thought of as
large-scale executable objects designed to be easily replaceable as a unit in the context of a
system. Especially beneficial is the situation when the interface is amenable to formal
characterization, (e.g., by Object Management Group [OMG] modeling language specification or
the UML). However, while the term, object is often applied to such components, use of OO
technology is not, in the strictest sense, a requirement for effective system partitioning.

3.2.2.1.1.3 System Partitioning for Components. Partitioning NWS functionality into
components departs from earlier system development efforts. It tends to produce smaller, more
functionally homogeneous and loosely coupled program units rather than a few large non-
homogenous shared-memory computer programs. These programs tend to be medium-grain
rather than fine grain, as might be found in data flow decomposition.

Figure 6. Functional Partitioning provides a notional representation of this distinction.
This diagram represents a typical hierarchical functional view of system design using a
traditional structured analysis approach. It is also appropriate to consider design from an OO
perspective. Two points should be considered. First, a pure OO view is neither necessary nor
desirable in defining components. In fact, components will likely take on characteristics of each.
Second, it is entirely possible that real-time components with stressing performance requirements
will be program units with OO interfaces rather than purely OO. Finally, even though Figure 6 is
based on a traditional structured approach, it does lend support to the notion of OO development
in that it represents system decomposition into ever finer levels of granularity.

The terms “functionally homogeneous” and “loosely coupled” should be understood in
general rather than precise terms. In this context, these terms imply a number of things about the
structure and composition of the body of code that constitutes the component, as follows:

• The boundaries of components result in clearly distinct entities separated by considerable
functional distinctiveness and distance in a requirements sense. For example, there
should be a distinct separation of User Interface (UI) components from non-UI

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 36

components.

• Components may rely on shared services provided by other components; in the example
above, both data link processing and NWS control need access to track information; this
in turn suggests yet another possible component boundary, in this case, one that provides
service to multiple track-consuming components.

• The operations and/or services provided by the component that other components rely on
are logically closely interrelated and mutually supportive.

Component boundaries are chosen to maximize internal binding strength while
minimizing external binding strength. In this case binding strength is related to the frequency,
volume and timeliness requirements of data access among code segments. Based upon
component boundaries selected in accord with the binding strength criterion:

• Intra-component data structures and operations are so closely related that direct visibility
and tight coupling of processing and data access (e.g., via shared memory) is appropriate
internally – the frequency, volume, or timeliness of data access or the synchronization of
changes to the data would make a message-based solution impractical; at the same time,
loose coupling (message passing and distributed object invocation) to all other
components is practical in a performance sense.

• Encapsulation, scoping, and visibility of externally referenced data structures are chosen
so that an API-based non-shared memory, non-direct invocation style of system
construction may be maintained without rendering component performance unsuitable
and without exposing non-essential internal data to external visibility and access.

Process
radar input

Detect Control Engage

Track
Management

Track
Correlation

Filter
routine

track 1

Mission
capability

PPS
functions

PPS
sub-functions

Tasks, algorithms,
messages, data

Modules, network
components

~1K-10K SLOC

Real-time threads,
procedures,

data, “objects”
~100-1KSLOC

Major elements
10K - >100K SLOC

Related groups
of modules

~10K-100K SLOC

Functional
View

Implementation
View

track n

. . .Track
message

Link
Management

Identification

Track
Maintenance

Track
Initiation

Figure 6. Functional Partitioning

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 37

• When senescence and bandwidth characteristics permit, tightly coupled (e.g., shared
memory) access to data needed by multiple code segments is replaced by “forward
caching” of data to consumers. This is done via an explicit multicast-like data distribution
mechanism (i.e. distribution of data by a server-like entity in advance of its need by
consuming clients). By this forward caching mechanism, data references that were
formerly accomplished by explicit access to memory shared are converted to local
references within the component using the forward cached data.

• Size of the component code base is a few hundred to many thousand lines of source code
(i.e., “medium grain”). Exceptions to the size guideline are twofold. The first case
involves large, tightly coupled applications for which loosely coupled partition
boundaries are not available. The second case involves small components, often elements
of service libraries, e.g. math functions or domain specific object classes of common
utility across applications.

• Reuse is defined at the component level. Components may be service libraries, broadly
applicable domain specific classes, executable programs or entire subsystems. There is
no inherent size limit associated with reuse. Generally, making a component reusable is a
business case and a programmatic decision as well as a technical decision. Reuse is often
the result of a design decision by the developer of a particular subsystem in order to
promote efficiency and competitiveness. In such cases, few if any intellectual property
issues arise with reuse. This is not the case where the scope of reuse applies across
multiple developers.

By the conventions used herein, components may be either active or passive. Thus,
components may be processes (active), or they may be libraries (passive). Design considerations
for active components include use of priorities, control of priority inversion, thread safe
synchronization and data access, and replication. Design considerations for passive components
include re-entrance. In both cases, error handling should be considered.

The most common view of an active component is that a component constitutes a
separate process. However, a capability called collocation is available within some distributed
object-computing models. With location transparency, objects may either be located on the same
machine and within the same address space as other code segments, or they may be located
remotely, accessible only via physical distributed computing mechanisms. Collocation allows
the middleware to use more efficient means to access objects that are located on the same
physical computer or within the same address space, even though the application invokes
operations on those objects in the same manner as it would if they were located on a remote
node. However, code built to depend on the efficiencies provided by collocation mechanisms
may be less portable than non-collocation code, therefore collocation is generally not
recommended unless no other mechanism will meet application performance requirements.

Component technology such as Enterprise Java Beans (EJB) and the CORBA Component
Model (CCM) may provide additional support for building reusable components and extensive
services. However, Enterprise Java Beans are only useful where Java is selected as the
implementation language. The CCM has the advantage of providing component support in a
multi-language environment.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 38

3.2.2.1.2 Guidance

Distributed tactical computer programs generallyconsist of a set of network resident
components whose collective interactions provide the complete specified functionality of a
required operational capability. Distributed components have available the underlying technology
base specified throughout Section 3.2.3. Each member of a set of fully distributed software
components should be capable of execution within a common unit of hardware. Exceptions to
this rule may occur in a large embedded real-time system. Thus, some components may exhibit
dependence on unique input/output or special computational resources, such as a group of closely
coupled processors. Except as required because of limitations involving unique resource and/or
connectivity requirements, components should make use of general purpose OA computing and
connectivity resources. Distributed components should exhibit the following characteristics:

1. Components should preserve NWS functionality and real-time performance.
2. Component functionality and interface definitions should be verified and documented via

explicit and comprehensive use case analysis, as exemplified in the UML and associated
design tools. Analysis should include real-time performance, latency and timing
considerations using real-time UML extensions as appropriate.

3. Components should fall into one or more of several categories: (1) compiled, linked,
stand-alone computer programs, (2) library elements, which can be loaded, and
instantiated by such linked components, (3) Nested components wherein simple
components are incorporated into a more complex compound components, (4) reusable
services and components, (5) COTS packages, etc. Compound components involving
nesting may be created in a variety of ways, including linking in of library services,
instantiation of simple classes with inheritance of simple class properties, etc.

4. Component boundaries should maximize intra-component cohesion, coupling, and
inherent parallelism. In order to leverage the unit of computing concept (see Section
3.2.3.3), and within the constraints of required performance and internal cohesion
requirements, encapsulated component functionality should be a small, manageable
subset of the overall functionality of the particular tactical element from which it derives.
As a rough guideline, simple components should be “medium grain” (i.e., sized on the
order of a few hundred to a few thousand lines of source code). Where necessary due to
the monolithic nature of certain processing algorithms, simple components may also be
larger.

5. Partitioning of tactical application functionality should be based upon an OO and/or
structured (control flow) decomposition method. This not only minimizes data flow
between components, but this method also limits ripple effects into other components of
internal component changes. Thus, it supports reuse and enhances maintainability.

6. Components should be as self-contained and functionally homogeneous as possible and
should encapsulate closely related and logically coherent functionality and data.

7. Components should be designed for self-contained and independent operation under
control of the host operating system. Components should be multithreaded where
necessary to preserve time and event scheduling properties.

8. Components should be designed to have low cohesion (i.e., a loosely coupled, message
passing or distributed objects interface) with other components in the system.

9. Components should be designed such that their reliance on data from other software
components in the system is minimized. When data sharing among components is

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 39

required, techniques such as distributed objects or message passing should be utilized to
the greatest extent possible in order to retain a loosely coupled system.

10. Component interfaces should be well-defined and durable as to content, function and
methods of implementation. Interface definition should be made at the logical level
rather than the physical level using standards-based interface definition languages and
automatic interface code generation tools. The various technologies that contribute to
developing inter-component interfaces are discussed in Section 3.2.3.

11. Component interfaces should be defined in an appropriate interface specification
document or via an Interface Design Language (IDL). The API for this interface should
be defined in an acceptable language or meta-language (e.g., Ada package specification,
C or C++ header file, XML schema, Javadoc, WSDL, or CORBA IDL).

12. Where efficiency considerations permit, standards-based self-defining interface methods
(e.g., Extensible Markup Language (XML)) may be employed. For example, XML
might be used to provide a variable format status data to an operator for display, or it
might be used as a common data representation mechanism for data transfers between
various system components. Such a mechanism would be particularly useful in cases
where the transferred data could dynamically assume variable formats. For example, a
data item representing status information might sometimes be a simple boolean
designating success or failure, but at other times contain several fields describing various
parameter values relevant to the status. Use of XML would provide the flexibility of
dynamic interpretation of the data according to its structure as delineated by XML tags.

13. Components should not use explicitly shared memory techniques to communicate data
between components; however, they may use shared variables among multiple internal
threads so long as proper data protection primitives are employed. This should not be
construed to forbid use of shared memory between an application and the OS or between
application and co-resident support functions such as timekeeping, data extraction, etc.
When shared memory use is absolutely unavoidable due to performance considerations,
standard methods should be employed.

14. Explicit control flows between components should be minimized, especially where
mechanisms for information accessibility (e.g., publish-subscribe) are available that do
not require symmetric (i.e., two-way) binding of component logical identities. Such
accessibility mechanisms promote server interfaces that may be shared by multiple
clients rather than a pair-wise interface approach. In the pair-wise approach, a unique
interface is built between every two components that should communicate, thus
increasing cost and complexity. Such non-symmetrical information access mechanisms
also promote component decoupling since the server need not know anything about the
clients.

15. All OA components with time critical performance and recovery requirements should be
replicated for fault tolerance. Fault tolerance mechanisms are discussed in Section
3.2.2.8. Components with less critical recovery time requirements may be designed so
that they can be restarted under RM control (see Section 3.2.3.8).

16. All components for which potential future performance requirements exceed single
processor computing capacity or network bandwidth should be replicated for scalability.
Scalable load sharing is discussed in Section 3.2.2.9.

17. Components subject to replication (i.e., for fault tolerance or scalability) should be
designed so that several active instantiations (or replicas) of the component can execute

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 40

simultaneously in physically different processors/locations.
18. When multiple active instantiations of a component are configured for fault tolerance,

the instantiations should provide a means for coordination of state information between
the replicas and for deciding which copies fulfill defined roles such as primary, backup,
etc.

19. When multiple active instantiations of a component are configured for load sharing, the
RM capability (see Section 3.2.3.8) should redistribute load and instantiate or remove
active replicas for purposes of achieving system load balancing, as well as fault
tolerance. Therefore, load balancing application components should be designed in such
a manner to facilitate RM execution of the requisite control action. Application replicas
should implement and coordinate the load balancing strategy. RM will add and/or
remove replicas according to that strategy. Further investigation is required to define
specific mechanism.

20. When multiple components perform functionally related operations (e.g. similar
processing functions for different sensors, weapons or warfare areas), an investigation
should be conducted during component design to assess reuse possibilities. Alternatives
to be considered include taking advantage of reuse possibilities inherent in the similarity
of the components (both in the form of design pattern reuse as well as code reuse) as
well as implementing the component as a common support service.

21. When multiple mature implementations of the CORBA Component model are available,
then use of CCM should be considered. For Java implementations, the Enterprise Java
Beans model should be considered.

22. Real-Time QoS metrics should be defined in terms of component performance
requirements and multi-component execution paths determined by domain analysis.
Real-Time QoS metrics and thresholds should be identified and quantified for each
distributed tactical function hosted by OA. Real-Time QoS metrics should be utilized by
the RM capability to dynamically balance the loading in the system as described in
Section 3.2.3.8. Further investigation is required to define specific mechanisms.

23. Components should be robust with respect to exception conditions. Where appropriate,
exceptions should be detected and handled internally to each component, preferably to
the lowest level of invoking code that has sufficient information to properly handle the
exception. When necessary, exceptions that cannot be handled locally should be defined
as error conditions within the component’s interface and conveyed to invoking code
segments in other components.

3.2.2.2 Portability

This section provides rationale and guidance for designing OA components to ensure
portability of source code across networks, computers, operating systems, middleware, and other
technology base components of the OA computing system.

3.2.2.2.1 Description

A major characteristic of today’s computing industry is the fact that the technology base
is changing and evolving rapidly. This potentially provides great benefit in terms of a steadily
improving price/performance ratio. However, systems that are not designed to accommodate this

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 41

rapid change of the technology base can be quite costly to maintain over the life-cycle.
Application source code not designed for portability should be modified, sometimes extensively,
when it is ported to new networks, computers, operating systems, middleware, etc. In some cases,
the changes can be so extensive that redesign of the system may be necessary.

Conversely, through proper use of standards and of isolation layers that hide
implementation details, it is possible to design components so that application source code can be
ported across a wide variety of underlying computing technologies. Achieving this objective
requires exercising sufficient design and implementation discipline to forego use of vendor-
unique features. This is sometimes difficult since vendor-unique features may confer a modest or
even substantial advantage in performance or in initial cost; however, the long term cost of
repeated use of non-portable source code to a succession of technology bases often eventually far
exceeds any initial cost savings or performance gains.

Portability is not an easy goal to implement. Different types of portability are available;
each resulting in a unique set of measures and metrics that is used to determine the portability
effectiveness in the design. Portability types are as follows:

• Product Line Portability: Vendor upgrades its process such as clock speed, additional
memory, etc but is nothing more than an extension of the vendor’s product line in the
same family (No changes to operating systems, compilers, linkers, debuggers, etc).

• Development Environment Portability: Vendor upgrades compilers, linkers, OS, patches,
tools, processes, IDEs, development frameworks, etc. With some new product releases,
additional features and capabilities may be added while current capabilities and features
may be eliminated or deprecated.

• Performance Portability: The performance in one computing and networking
environment is the same (within thresholds which needs to be defined).

• Operating System Portability: Portability of applications between operating systems. The
POSIX standard was designed to promote portability of applications across different
operating system platforms. Software that is developed in close compliance with the
POSIX specification can be ported with varying degrees of ease from one operating
system environment to another.

• Platform Portability: Portability of applications between different hardware platforms.
This is both between a PowerPC from Vendor X to a PowerPC from Vendor Y and
PowerPC from Vendor X or Y to Intel Pentium from Y or X. However, this portability is
still in the basic platform style such as single board computers (SBC), i.e., SBC-to-SBC
but not SBC-to-server.

• Computing Environment Portability: Portability of applications between different
computing and networking environment. This involves porting the application from one
type of environment to another style, e.g., SBC-to-server.

• Language Portability: Portability of the application from one computer language to
another language, e.g. via use of language neutral abstraction techniques such as Model
Driven Architectures

• Architecture Portability: Port or convert the architecture style to a new architecture style.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 42

• Intellectual Portability: Portability of knowledge and training from one environment to
another.

• Language Platform Portability: Combination of operating system, computing
environment, development environment, and platform portability. The Java language and
Java Virtual Machine (JVM) were created to support this type of portability.

• Complete Portability: Combination of the different portability types or all of the
portability types.

A complete discussion of portability should address most, if not all, of these attributes. In
many cases, metrics will involve thresholds for labor efforts, cost, schedule, and code changes to
support the desired portability. Establishment of specific metrics for each of these is beyond the
scope of this document and should be addressed early in OA design.

3.2.2.2.2 Guidance

In accord with the objective of producing application components that can be ported
quickly and affordably from one computing environment to another, applications should be built
to be portable across a variety of standards-based platforms, networks, operating systems and
other technology components.

1. Application source code should require a minimum of compilation modifications due to
changes in network configuration and technology, computers, operating systems,
middleware, and other technology base components of the OA computing system.

2. In support of the above guidance, the changed computing environment components
should adhere to the interface standards employed by the OA application software (see
Section 3.2.3 for information on the OA computing environment; see Section 3.2.7 for
guidance on standards selection).

3. There should be a minimum of dependence of application components on vendor unique
features. Where needed, tailoring to specific machine/OS/vendor differences should be
accomplished by isolation of changes in an adaptation layer. When possible, such
mechanisms should utilize commonly available functions that can be emulated by other
means (such as macros/stubs).

4. Portability may on occasion need to be sacrificed (e.g., via the use of vendor unique
features) to meet specific component performance requirements. The Navy should
approve reductions in the level of required portability. The Navy should also approve
any use of vendor unique features.

3.2.2.3 Location transparency

This section provides rationale and guidance for designing OA components to ensure
location transparent allocation and operation.

3.2.2.3.1 Description

A fundamental and recurring problem in developing and evolving large systems is the
need for frequent change and growth. This means that task-to-resource bindings established

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 43

during initial system design are likely to change over time – sometimes quite rapidly and
extensively – as new requirements emerge and are incorporated. System designs that fix the
task-to-resource bindings at the design stage are inherently difficult, expensive and time-
consuming to change.

Mechanisms exist to defer binding of application programs to system resources until
system startup and, increasingly, at run-time. Use of these deferred binding mechanisms,
whenever tactical performance requirements permit, confers considerable flexibility in the design
and maintenance of large, complex systems. Deferred binding permits incorporation of new
computing resources to meet expanded requirements while preserving flexibility to modify
system resource allocation, as well as to provide more flexible failure recovery schemes. These
mechanisms sometimes add overhead, a fact that has weighed against their use in the past.
However, the low cost and speed of modern processors and networks renders this overhead
affordable in all but the most stringent performance cases.

In accord with the objective of producing designs that permit or enable deferred bindings,
applications should be built to be portable across a number of platforms, networks and operating
systems. They should take advantage of modern middleware and other technologies, including
collocation facilities when necessary, so that they are location transparent (i.e., so that they
communicate as logical entities rather than fixed-mapped entities located at pre-defined physical
addresses). Included in the capabilities of such middleware products are name services that
provide the translation from the logical addressing scheme of the middleware-based applications
to the underlying physical addresses characteristic of the equipment base.

Location transparency has certain implications on system test and certification. In
particular, it creates a situation rarely faced in the tactical community before, namely the fact that
a particular functional capability may be achieved by multiple (identical) physical allocations.
(In the more general case, even this physical isomorphism may be relaxed.) While these
configurations are logically identical and physically comparable, they are not physically identical.
The issue of acceptance testing and certification should be addressed in this context.
Certification is discussed in Section 3.2.6.

3.2.2.3.2 Guidance

To achieve the objective of producing designs that permit or enable deferred bindings, the
following guidelines are provided for component design:

1. Application components should be designed to be location transparent within OA
network (i.e., there should be no application-level binding between components and
physical addresses). This guidance should, at a minimum, apply to groups of compatible
resource units (i.e., pools of resource that are effectively interchangeable from the
perspective of component resource requirements).

2. Except where unique performance-driven configuration requirements exist, addressing of
components within the OA implementation should be by means of logical names rather
than physical locations. High-level middleware protocols (i.e., above the level of the
Transmission Control Protocol/Internet Protocol (TCP/IP) and the Universal Datagram
Protocol (UDP/IP)) that provide logical naming services should be used for purposes of

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 44

inter-component communications in all cases where performance requirements permit
their use. These middleware protocols should provide a naming service. Recent combat
system development experience across a wide selection of systems and developers has
shown that system performance requirements are now achievable for most warfighting
applications; exceptions generally lie in the area of signal processing, missile internal
guidance algorithms and other extremely high performance domains.

3. Object collocation facilities should be used only where necessary as a means of
increasing efficiency and performance.

4. Currently, complete separation of components from physical addresses is infeasible in
most I/O device driver designs. To minimize the impact, one option is that the device
driver should provide an interface to the system via a dedicated application component
or components that present a named interface "port" or mechanism (e.g., Input/Output
Processor [IOP] Gateway or storage-related nodes). Other implementations are possible
and may be employed so long as location transparency is not compromised, subject to
item 2. above.

3.2.2.4 Client-Server

This section provides rationale and guidance for designing OA components according to
the widely used client-server design pattern.

3.2.2.4.1 Description

The client-server design pattern has gained widespread acceptance in commercial
computing applications. Indeed, it has become almost ubiquitous because the model provides a
very useful way of exporting services to a variety of users in a standardized manner. Servers, in
particular, provide an excellent means of promoting reuse and standardization at the application
level.

A server is a system component that supplies and controls access to a computational or
data resource via a predefined interface. The resource controlled by a server may be a physical
device, such as a display or external sensor; a persistent data store, such as a database; a state
data repository; an algorithm or a combination of these.

The interface provided by the server may include specification or guarantee of QoS
parameters, such as client request priority or maximum response latency. A server exhibits the
following characteristics:

• A server and/or clients may consist of multiple cooperative or replicated processes.

• Servers do not require any architectural or functional knowledge of the client
application(s) that use it.

• Clients require no functional knowledge about the server other than the server’s API; nor
do clients need to know the specific server replica or process with which they are
communicating.

• A server does not initiate interaction independently with its clients unless clients have

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 45

registered for specific “push” services (i.e., server-initiated updates).

A client is any component that accesses the server via the defined API. Consistent with
previous discussions, clients and servers may be physically collocated where use of such
mechanisms is appropriate for performance. A server does not require knowledge of its clients in
advance of receiving a request; thus the client should initiate any interaction between client and
server. Similarly, clients do not need to know the internal workings of the server. Furthermore,
since a server is not dependent upon the function or implementation of a client, it may provide
services to multiple heterogeneous clients.

Because clients and servers may be mission critical components, and because they may
have significant processing loads and/or throughput requirements, both clients and servers may
have replication requirements in support of fault tolerance and/or scalability. Replication of any
given client, for either reason, should require no modification of the predefined client-server
interface. However, the interface can be designed to provide server support for client replication
without negatively affecting the integrity of the client-server relationship. Examples of interface
design choices that would support client replication, while still maintaining an appropriate
decoupling between client and server include:

• A registration mechanism in which the client specifies a publication group for the server
to use in its distribution of data to the client. All replicas of the client can then benefit
from the server’s data distribution without each replica having to register separately.

• An interface by which a new replica can request current state data from the server. By
anticipating the requirements of a replicated client, an appropriately designed server
interface can work equally well for replicated and non-replicated clients.

• Interface support that allows a client to register for only a selected portion of data (e.g.
only certain tracks) for the purpose of load sharing with its peers.

The roles of client and server are not mutually exclusive. These designations refer to the
relationship of two processes with regard to a set of interactions, e.g. access to a database. It is
possible, and even likely, that a given process can be a client with respect to one set of
interactions, and a server with respect to another. For example, a server that distributes
kinematic sensor data may also be a client of a server that distributes non-kinematic sensor data –
such as an identification server. In addition, both servers may be clients of a data-recording
server.

Use of client-server architecture concepts allows for the development of both subsystem-
wide and system-wide services. Typical services include but are not limited to data distribution;
access to physical resources, such as sensors, actuators, or external devices; or state data
protection and mediation. They may provide services required by the entire system, such as time
synchronization or instrumentation; or that may be required by only a subset of the applications.
Regardless, the availability of client-independent services greatly enhances the ease with which
new elements and applications can integrate with the existing system.

A schematic of the interactions between clients and servers is shown in Figure 7. Client-
Server Model. Three common models of client-server interaction are defined:

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 46

• Synchronous: request-reply
• Asynchronous: one-way
• Asynchronous response: client registration

The first model, the synchronous model, is also known as the pull or request-reply model.
This model requires that the server take a specific action in response to the client’s request. A
client will issue a message to a server requesting that a service be performed. For example, the
client might request the display of data at an operator console or the initiation of some
algorithmic processing. When the server completes action on the request, it will respond to the
client with the results of the action, i.e. with an acknowledgment of completion or the results of
the computation.

In some cases, a client may make a request to the server and no response is required. This
type of interaction is the second common model, sometimes called the asynchronous one-way
model, when the results of an asynchronous request to a server are implicit (e.g., a change of state
data in the server). This model of client-server may be implemented using a multicast transport
mechanism, effectively creating a diffusion of data, such as status data, to any client listening to
data across that multicast channel.

The third common model of client-server interaction is the client registration or
asynchronous response model, often referred to as the push model. This model requires that
clients register for services that are to be delivered at a later point in time. For example, a client
may register with a track data server for the update of track data at some client-specified
frequency. Alternatively, a client may request notification upon a change in state of some
resource. The server retains information about the specific requests of the registered clients as
well as sufficient logical addressing information to allow the server to monitor the status of the
clients and provide the information as appropriate. This model may also used in conjunction
with a multicast transport mechanism, where the logical address is a multicast address. This

• Must know server services
• Must use server protocol
• Places “load” on server

• Provides service to any requestor
• Does not know details of clients
• May operate by “push” and/or “pull”
• Enforces information hiding
• Permits graceful scalability, but. . .

Consuming
Function

Providing
Function

S
o
f
t
w
a
r
e

A
P
I

H
a
r
d
w
a
r
e

I
/
F

H
a
r
d
w
a
r
e

I
/
F

S
o
f
t
w
a
r
e

A
P
I

Information
Transfer

Mechanisms
& Media}

Protocols

SERVER CLIENT

Possible
multicast

Figure 7. Client-Server Model

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 47

allows a single client to register for information that is then delivered to any client with similar
data requirements that is aware of and listening for data across that multicast channel.

Peer-to-peer relationships are typically used between process replicas or between related
clients of a common server. Peers communicate to notify one another of state changing events or
to coordinate a set of activities that culminate in a change in state data.

Servers control development and maintenance cost and complexity by providing software
that serves many clients instead of providing separate and unique software functions for different
consumers. Thus, the client-server model supports the concept of multipurpose software. If
unique customization were permitted, the client-server design pattern would not be helpful.

However, a critical system performance impact exists that should be accounted for during
server design. By their very nature, clients place loads on the servers they access. Thus, servers
should be designed carefully to ensure required system performance and efficiency. For this
reason, design of client-server architectures, particularly for real-time applications, should be
approached carefully. Furthermore, care should be taken that “utilization creep” does not occur;
i.e., a growth in the number of calls on a server pushes the server towards the upper limits of its
planned load capacity without sounding any alarms. In order to mitigate the impact of this client-
imposed load, it is appropriate to consider a scalable design pattern for servers (see section
3.2.2.9).

3.2.2.4.2 Guidance

The client-server model has been shown to be beneficial in implementing flexible and
scalable systems. As such, it should incorporate the following guidance as appropriate:

1. To the maximum extent possible, servers should be designed such that they are
independent of the implementation of their clients. Servers should be capable of
providing services to multiple heterogeneous clients.

2. Clients and servers may have replication requirements in support of fault tolerance
and/or scalability. Replication of any given client, for either reason, should require no
modification of the predefined client-server interface. However, the client-server
interface can be designed to provide server support for client replication without
negatively affecting the integrity of the client-server relationship.

3. For clients and servers where replication is involved, the client-server API should be
designed such that the clients are not directly dependent upon the replication
mechanisms of the server. Additionally, the API should support, or at least not interfere
with potential replication of both the servers and the clients.

4. As with all component interfaces (see Section 3.2.2.1), the interface provided to the
client by the server should be well defined in an appropriate interface specification
document or via an Interface Design Language (IDL). The API for this interface should
be defined in an acceptable language or meta-language (e.g., Ada package specification,
C or C++ header file, XML schema, Javadoc, WSDL, or CORBA IDL). It should
provide access to the server via a procedural or object class interface. When the API and
server are separately maintained, documentation should be required of both the API and
the public interface between the API and the server.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 48

5. For protocol-based interfaces, (e.g. FTP, HTTP), a rigorous specification of the protocol
version, appropriate ports, expected inputs and outputs, and options, as makes sense for
that protocol, should be provided in lieu of an API.

6. Servers should detect erroneous invocations and invocations for which sequence
dependencies exist, and they should export exception conditions to invoking clients via
the component’s interface. Such erroneous invocations should not cause the component
to operate incorrectly. Interface specifications should indicate the meaning of exceptions
and the conditions under which they arise (e.g., the specification should define what
happens if open() is called twice without an intervening close() call).

7. Components should adopt internal design safeguards (e.g., finite state machine
structure), to eliminate the possibility that erroneous inputs and/or call sequences can
result in erroneous operation, hung conditions and crashes of the component.

8. Where appropriate, the server interface specification should include both explicit and
implicit QoS parameters (see discussion in Section 3.2.2.10.1.2). An example of an
explicit QoS parameter would be a mechanism for clients to specify response latency
with their request. An example of an implicit QoS parameter would be a maximum
response time associated with a particular type of request – regardless of the client
initiating the action.

3.2.2.5 Data Distribution

This section provides rationale and guidance for ensuring the efficient flow, or
distribution, of high-volume continuously refreshed data among OA components. Examples
include distribution of track updates and navigation data to OA components. Distribution
management techniques include use of a track data server to provide track distribution to
registered track consumer client components; use of periodically refreshed push distribution
(forward caching) of continuously refreshed data; and use of asynchronous processes with
timed/fixed packet I/O buffering.

3.2.2.5.1 Description

The nature of data flow within a large, complex system often dictates that certain
components are distributors of data that is continuously refreshed, frequently in accord with a
periodically scheduled thread that guarantees that no data are ever more stale than a defined
value. Such components are excellent candidates for use of the publish-subscribe pattern.

The publish-subscribe pattern allows data consumers to express their interest in certain
events or data, frequently referred to as topics. Data producers, or publishers, publish data
matching one or more of the topics. A logical software bus, often in the form of a distributed
event manager, coordinates delivery of the data to the consumers based on the topics. This
software bus allows the data producers and consumers to be logically decoupled. Publishers do
not need any awareness of the subscribers that are registered for their data. Likewise, subscribers
need only be aware of the availability of the data, in the form of the topics that are available.
They do not need to be aware of the data sources. Many commercial middleware products
support the use of the publish-subscribe design pattern for distributed systems.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 49

Components that participate in the distribution of mission-critical data, either as data
producers or consumers, have the potential to affect the performance of other related data
producers and consumers. In order that they perform as effectively and efficiently as possible,
certain design characteristics should be implemented.

Many tightly timed real-time systems resort to a highly rigid synchronous periodic design
in order to achieve efficiency. This is a good design for pure hard real-time systems that cannot
meet timing requirements any other way. However, it is also an inflexible one, particularly when
applied in a distributed processing environment. If timing and performance considerations
permit, a far more flexible approach is available; i.e., one based on asynchronous loosely coupled
processes.

In such cases, workload flow variations are generally “cushioned” by use of message
queues or buffers to smooth out backlogs and variations in arrival rates. This approach can be
used in conjunction with the synchronous, hard real-time approach, thus fostering co-existence of
hard and soft real-time processing within the same overall system.

Managing the flow of frequently updated information in such a real-time system is a
critical design characteristic, particularly if the flow is high volume, as it so often is where sensor
data distribution is part of the overall system design. This problem is compounded if the updates
are irregular, as they are in the case of some sensor systems. Such variations are attributable to
the fact that data flow is a function of what is in the environment in which the sensor operates.

In real-time systems, requirements generally tend to focus on latency considerations,
despite the fact that -- in view of the high volumes associated with these data streams -- efficient
use of available bandwidth is also an important consideration. The two simplest strategies for
managing this data flow are (1) to send every update, which minimizes latency, or (2) to fill a
fixed-size buffer prior to transmission, which maximizes channel throughput.

However, neither strategy provides a complete solution in many real-time system
applications. In particular, the delivery time for the fixed-buffer method is potentially
unbounded, an unacceptable situation for real-time performance. A good compromise is to
employ both techniques simultaneously.

In the combat system, track distribution is a good example of the data distribution
problem, due to many consumers of track data. In previous system designs, processed track
information (i.e., correlated and filtered data) was provided to consumers via custom designed
interfaces, with each interface being uniquely tailored to the requirements of the receiving
element. This provides maximum functional capability, but it is also the most costly approach,
and the one least susceptible to multi-purpose use.

Providing push-based distribution of the entire track file, appropriately time-tagged for
local extrapolation (see Section 3.2.3.13 for guidance on system-wide time synchronization), to
all track consumers ensures that track information is always available to consumers when they
need it. In effect, data is “forward cached” with track consumers against the certain eventuality
that it will be needed. The volume of data and the frequency with which it should be distributed
is well within the capacity of modern switch-based networks.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 50

Benefits of using a push-distribution mechanism for track data include reduced
processing in the track data server, reducing the possibility of widespread contention and
performance bottlenecks. There are also the benefits of increased ease of integration of new
functionality; ability to leverage common code to perform local caching and retrieval of track
data, resulting in a reduction of application complexity; minimal performance and bandwidth
impact with additional track data consumers if multicast is leveraged.

3.2.2.5.2 Guidance

The design guidance for OA components that perform distribution of continuously
refreshed data is as follows:

1. The publish-subscribe pattern should be used for distribution of continuously refreshed
data. While this would seem to drive up network bandwidth utilization, techniques such
as multicast exist to ameliorate this possibility.

2. A common API and library of services should be provided to data consumers for receipt
of events, data updates, and retrieval of locally cached data. This API may take the form
of application library component APIs, standards-based product APIs (e.g. middleware),
or a combination, as appropriate.

3. Data producers should provide a defined class of service with respect not only to
functionality but also to performance. Thus data distribution periodicity, senescence and
maximum load should be defined as a component requirement for the data producer.
The periodicity and other distribution characteristics of the data producers’ transmissions
should meet consumer requirements. Data producers should be designed to provide a
limited but distinct range of distribution QoS options in order to service varying data
consumer timeliness requirements.

4. Where throughput and latency requirements require it, continuously refreshed data flows
among tactical components may be implemented using timed buffer transmissions. In
this design, the buffer size is often fixed, but its transmission is tied to a periodic cycle
that satisfies timeliness requirements associated with the data flow. If the buffer fills up
before the period expires, it is transmitted as soon as it is full. In this way, efficient
throughput and channel use is maintained. On the other hand, if the buffer is not full
when the period expires, then the partial buffer is transmitted. This ensures that a
defined worst-case latency is not exceeded.

5. To ensure efficient data producer operation, and when possible given performance
requirements, underlying communication of data from data producers to the data
consumers should be performed by middleware protocols that provide IP multicast
functionality. This ensures efficient server operation.

6. Where applicable, data producers should be capable of guaranteeing first-in, first-out
order of data flow to each data consumer. However, total ordering of the producer’s data
flow across consumers is not necessarily required. That is, unless specific applications
have a total ordering requirement, completion of a particular update to all consumers is
not necessary before some consumers begin receiving other updates.

7. Delays in consumption of distributed data on the part of a data consumer should not
result in a system-wide performance-degrading backup of data distributed from the
producer to that consumer or any other consumer; nor should the producer’s operation be
impacted. Where required, data consumers should be designed such that, during

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 51

overload conditions, data may be discarded. This latter requirement ensures that the
ordering requirement stated above does not force consumers to process stale data. The
circumstances under which data consumers may discard data and the criteria for
discarding the data should be clearly defined in an appropriate interface specification.

8. Mission critical data producers should be fault tolerant. A number of useable fault
tolerance strategies are defined as architecture patterns in Section 3.2.2.8.

9. Where substantial growth is anticipated in the load a data producer is likely to experience
over its life-cycle, the producer should be designed using a scalable architecture pattern
(see Section 3.2.2.9).

10. Where applicable, consider utilizing intelligent cache techniques and patterns, such as
forward caching of data, in order to reduce the path traversed and the latency incurred by
a component data request and the resulting response.

3.2.2.6 State Data Coherency

This section provides rationale and guidance for ensuring that OA components that
manage composite transient state data are designed to provide correct operation under all
possible state transition situations. Included are complex state variables resulting from the run-
time interaction of many components. Maintaining state data coherency is a part of the overall
requirement to preserve data integrity in mission critical and safety critical systems. This section
refers to the maintenance of transient state data rather than persistent state data. A more stringent
degree of coherency of this transient state is required in some cases to achieve application fault
tolerance, beyond that required to achieve correct execution.

3.2.2.6.1 Description

Certain applications are inherently state intensive. Persistent state is generally maintained
on persistent media in the form of databases and files. However, some applications need to
manage transient state – state that is critical to correct performance but is changing at a
sufficiently frequent rate or with time critical access needs that make storage on persistent media
impractical. For such applications, the total set of transient state information constitutes a
composite state vector comprised of state information contributed by many other components.
Maintenance of this composite state information is often vitally important for correct system
operation. Furthermore, maintenance of and interchange of transient state information among
replicated components for the purpose of failure recovery is a major consideration in designing
state-intensive fault-tolerant components. For this reason, special consideration should be given
to the design of components to ensure state data coherency.

Mechanisms by which state data coherency may be maintained include atomic multicast
communication transactions with one or more components, guaranteed delivery of message
traffic in a specific order and synchronized exchange of transient state data among participating
components. Atomicity of multicast communications means that for each multicast, either all
recipients receive the message or none receive it – and that the sender knows who received what.
In the case of ordered messaging, various ordering properties are frequently defined (see Section
3.2.3.7.1.3).

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 52

Use of priorities can, at times, conflict with maintaining transient state consistency.
Priorities should not be used to achieve message ordering, since the scheduling mechanisms
between platforms vary and can result in different effects for applications running on different
operating systems. Also, priorities can disrupt other ordering mechanisms, such as ordered
messaging, potentially causing the order in which messages are handled to be unpredictable.

3.2.2.6.2 Guidance

The design guidance for OA components that maintain composite state data is as follows:

1. Where application performance requirements permit, components that manage transient
composite state data should utilize middleware and reusable services to enforce
communications atomicity, message ordering and state data exchange. Impact on
application source code should be minimized and limited to those steps for which
appropriate middleware and service library functions are not available.

2. Components with transient composite state requirements should not utilize priorities to
achieve ordering between replicas. To the degree possible, components that maintain
composite state should not depend on use of priorities for correct operation. Where
essential to meet performance requirements, care should be taken when using priorities
in such components so that affects on portability and interoperability are minimized.

3. Components whose primary task is transient state data management should ensure by
component design that computations associated with state data coherency maintenance
do not adversely impact performance and timing characteristics of other system
components. Maintenance of composite state arising from interactions with other
components places a strong obligation on the designer to ensure responsiveness of the
state data-maintaining component. Further investigation is required to define specific
mechanisms.

4. Unlike data distribution servers (see Section 3.2.2.5), which have a requirement for non-
coupled operation with their clients, state data intensive components should operate in
synchrony with other components to which it interfaces to maintain its transient
composite state.

5. Transient state data maintenance should be compatible with the component’s fault
tolerance design pattern (see Section 3.2.2.8).

3.2.2.7 Computational Flow

This section provides rationale and guidance for ensuring those OA components that
perform periodic or on-demand computations are designed to provide efficient and effective
operation.

3.2.2.7.1 Description

Many of the computations in large, complex systems are part of an overall data flow
process. In this model, information arrives at a component, is processed, and is then forwarded
to another component for additional processing. Such components are sometimes referred to as
pipes or filters. The concatenation of several such components, coupled by interfaces and by
component-spanning timelines requirements, constitutes a data flow path through the system.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 53

Data flow paths can include both periodic processing and event-based processing. They
may also be quasi-continuous or intermittent.

For periodic data flow paths, the nature of the processing is such that large quantities of
data are processed on some pre-defined periodic frequency. In some instances, outputs may
occur only infrequently (e.g., when certain conditions are detected in the incoming data). In
other situations, periodic outputs of processed data may occur. Periodic data flow processes
should also execute in a coordinated fashion with external event reaction time paths. Since
event-based processing should execute with very low latency, periodic data flow processes may
need to be pre-empted, requiring that special care be taken in their design.

Event-based processing is defined as processing that takes place in response to some pre-
defined external event or condition. Sometimes the resultant processing is limited to either a
discrete response to the event or to updating internal state information based upon the event. In
other cases, a quasi-continuous sequence of processing may be initiated. In the quasi-continuous
cases, a computational data flow may come into existence for a period, after which it returns to a
quiescent state.

3.2.2.7.2 Guidance

The design guidance for OA components that perform computations as a part of an
overall system data flow is as follows:

1. Components that are part of a computational data flow path should, where necessary,
utilize priorities to ensure that reactive threads of operation requiring minimum latency
response are able to pre-empt routine threads to gain control of the CPU.

2. For real-time components, where routine computational threads (whether periodic
scheduled or externally stimulated) are coupled to physics-based system requirements,
thread priorities and careful system design should be utilized to ensure that processing
requirements and latencies are achieved.

3. When quasi-continuous processing requirements may occur, the system designer should
ensure that adequate reserve computational capacity is designed in to ensure proper
performance of both continuous and quasi-continuous operations. Use of a dynamic RM
capability to ensure that component computing capacity requirements are met is
discussed in Section 3.2.3.8.

4. To the maximum extent possible, computational data flow components should be
constructed to minimize retained state information. Unless otherwise infeasible, state
data maintenance for such components should be limited to state information that is
needed to sustain fault tolerance and failure recovery operations.

5. For components that should maintain state data, every effort should be exerted to design
such components so that state data updates consist of a simple update operation
involving only the previous state operated on by new data. Interactions with multiple
other components in the maintenance of state data should be avoided to the maximum
extent possible. When these conditions cannot be met, then state data coherency
preserving patterns are likely to be more appropriate (see Section 3.2.2.6). Further
investigation is required to define specific mechanisms.

6. Computational data flow components for which computational demand is likely to

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 54

exceed the capacity of a single CPU - either in bulk computational capacity or in
required minimal computational senescence - should be designed to exercise
computational load management among a number of components (see Section 3.2.2.9).
These components may be scalable peer-clients, pipelined components, partitioned
functional capabilities, etc.

3.2.2.8 Fault Tolerance

This section provides rationale and requirements for ensuring that OA components
requiring continuous availability are designed to provide a fault tolerant capability in accord with
a defined set of fault tolerance models (e.g., active, passive and selected hybrids).

3.2.2.8.1 Description

Failure of a mission critical application process means that the system can no longer carry
out an assigned function. When rapid recovery is required, replication of mission critical
application processes can increase the tolerance of the system to such faults. This is known as
replication for fault tolerance. When long recovery time specifications exist, replication for fault
tolerance may not be necessary. In such cases, the system RM function may simply restart the
failed application component to regain the functionality that was lost as a result of the failure.

In addition to replication for fault tolerance, components may also be replicated for load
sharing (see Section 3.2.2.9). In general, load-sharing components also contain provisions for
readjustment of loads and continuation of operations following faults.

Frequently, mission critical processes retain memory-resident critical-system state data. As such,
in the event that a replica fails, maintaining the integrity of that state data is a significant
consideration in the design of an application that is replicated for fault tolerance.

Middleware plays a critical role in the implementation of any fault-tolerant component,
especially group communication middleware. Group communication middleware, including
communications endpoint considerations, is discussed in Section 3.2.3.7.1.3.

Several common models used to implement fault-tolerant replication solutions. Six
models are illustrated conceptually in Figure 8. Fault Tolerance Models, of which five are
described in more detail in the following subsections - Active Replication, Passive Replication,
Primary/Shadow Replication, N-Version Replication, and Check-pointing. The load-sharing
peer-client model is discussed in Section 3.2.2.9.1.2. The items that are checked in Figure 6 –
Load Sharing, Primary/Shadow, Check-Pointing, and Active Replication- represent fault
tolerance models examined in the HiPer-D risk reduction program.

3.2.2.8.1.1 Active Replication. When an application process has deterministic
inputs/outputs and deterministic behavior based on those inputs/outputs, active replication is a
valid model for achieving fault tolerance. Active replication involves executing multiple
identical copies of the same replicable process. Each replica receives all inputs, performs all
processing, and provides responses. Receivers of responses from the replicas are responsible for
filtering out duplicate data contained in the responses. The active replication model relies on

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 55

deterministic input and behaviors for the replicas to remain in a consistent state. Generally, state
synchronization between replicas is not performed except during replica initiation.

Two significant limitations are associated with this model: first, very few applications are
completely deterministic. Sources of non-determinism may include very complex processing
associated with reliable and atomic multicast, multi-source data inputs, memory management,
thread scheduling, distributed time synchronization, time-based computations, and error
handling. Group communications tools (discussed in detail in Section 3.2.3.7.1.3) can be very
useful insofar that they can provide atomic, totally ordered multicast and ordered group
membership change notifications. These attributes can reduce or eliminate potential non-
determinism in the input/output streams to the replicas; however, such tools do not control other
sources of non-determinism.

The second limitation with active replication is its inability to handle Byzantine failures.
Byzantine failures include unusual failure condition with a wide variety of causes, including data
corruption, misbehaving applications, or even maliciously introduced errors. This class of
failures is extremely difficult to manage with any model other than N-version replication,
discussed in Section 3.2.2.8.1.4.

Single-threaded applications that perform non-time dependent calculations and
applications that perform database retrievals from non-writable sources may be able to utilize an
active replication model; however, its applicability is limited in the complex multi-threaded real-
time systems domain.

• HiPer-D applications rely on location independent group multicast protocols
• Multiple replication models may be used within a single application process
• State data consistency makes fault tolerance challenging, esp. in multi-threaded components

• N-1 times load increase
• Redundant processing
• Results delayed by voting process
• For maximum benefit odd number
 of different designs are needed

N-Version/Voting

Check-Pointing

• No load increase
• No redundant processing
• Slow recovery time

• Possibly N-1 times load increase
• Redundant processing
• Fast recovery

Primary/Shadow

Active Replication

• N-1 times load increase
• Redundant processing
• Increased network traffic
• Results filtering required
• Extremely fast recovery

• Minimal load increase
• Recovery delay due to lack of
 state synchronization

Load Sharing

• Negligible load increase
• No redundant processing
• Increased network traffic
• Moderate recovery time

Passive Replication

Figure 8. Fault Tolerance Models

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 56

3.2.2.8.1.2 Passive Replication. Passive replication is an appropriate replication
strategy when the behavior of a process is non-deterministic based on its inputs and/or when
processing resources are constrained. As in active replication, all passive replicas receive all
inputs. Only the primary replica actually processes inputs and provides responses. Either on a
periodic or an event basis, the primary replica transfers relevant application state data to the other
replicas. This state data transfer is called checkpoint data. The other replicas, referred to as the
secondary or passive replicas, queue the inputs until checkpoint data is received from the
primary. The replicas use the checkpoint data from the primary to update state data as required,
and the queued inputs associated with that checkpoint data are deleted. When a primary replica
failure occurs, one of the passive replicas assumes primary responsibility and begins processing
the inputs that were queued since the last checkpoint was received.

This method of replication requires associated applications be capable of handling
duplicate data from the replicas. Recovery time may be long, if significant processing is required
for the queued inputs. To some extent this is controllable. Recovery time is determined by the
relationship between queue growth and checkpoint interval. However, this model tolerates non-
deterministic responses to input better than other replication methods.

Clearly, successful implementation of this replication model requires that associations be
established between the inputs processed by the primary replica and the checkpoint data. By
ensuring totally ordered message inputs to all replicas (both passive and active), group
communications tools can play a significant role in establishing these associations.

3.2.2.8.1.3 Primary/Shadow Replication. A significant number of mission-critical
applications do not meet the determinism criteria to use an active replication model, yet they
have real-time requirements that cannot be fulfilled through passive replication. For these
applications, a primary/shadow replication model may be more appropriate.

Although replicas processing the same inputs and outputs may arrive at different
solutions, the primary/shadow model assumes that both solutions are potentially correct (in the
absence of various subtle hardware and software errors). Multiple copies of a process are
executed simultaneously, with one designated the primary replica and the remainder designated
shadow replicas. All replicas receive and process all inputs with the primary replica providing
control over the order in which the inputs are processed. When the primary arrives at either an
intermediate or final solution, it provides that solution to the shadow replicas. The shadow
replicas update their state with the primary replica’s solution, and do not issue independent
responses, thus maintaining consistency with the primary replica. If the primary replica should
fail, one of the shadow replicas assumes the role of the primary at the point in the input/output
flow at which the failure occurred.

This replication model is based upon the following assumptions: failures are ordered with
respect to message flow, messages will be issued via atomic multicast, and messages will be
processed in first-in-first-out (FIFO) order. Since the primary replica controls the order in which
the inputs are processed and does not require identical responses from the replicas, multi-
threaded applications can be handled, and totally ordered messages are not required.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 57

A detailed understanding of potential sources of non-determinism in the application is
required to use this replication model. Since these sources vary with the specific application,
primary/shadow replication cannot be implemented without awareness of the synchronization of
the application state between the replicas.

3.2.2.8.1.4 N-Version Replication. For some applications, correctness and/or
uninterrupted (seamless) availability are critical. Safety critical systems have unique correctness
requirements. One method of providing greater assurance of algorithmic correctness is obtained
through utilizing multiple implementations of critical algorithms. In N-version replication, N
implementations of a process are executed, all receiving inputs and generating solutions.
Through some arbitration, such as voting, a response is chosen, and potentially misbehaving
processes are identified and excluded.

This method of replication shares some similarities with active replication. Care should
be taken to exclude or accommodate sources of non-determinism, such as time dependencies.
Some debate exists as to whether N-version replication provides significant benefit with respect
to software/algorithmic correctness, since the source of many software and algorithm errors lies
in the specification of the algorithms. Additionally, many software errors also result from
incorrect handling of boundary and error conditions; thus they are more likely to occur in
multiple implementations. Due to its high cost, use of N-version replication is rare.

3.2.2.8.1.5 Check-Pointing. Check-pointing supports fault tolerance through the
replication of data rather than replication of components. An application that implements a
check-pointing pattern writes a snapshot of the state of an executing application, either to some
form of persistent storage such as a disk or to another application that serves as a repository for
the state. An application may write state data periodically or each time the state data is changed.
If the application crashes, it can resume execution from the last checkpoint recorded by the
original application.

This form of replication does not generally provide the precision of state retention that is
potentially offered by other forms of fault tolerance. The recovery time can be slower, as it
involves both restarting an application instance and recovering the state data from its storage
medium. One advantage is that it affords some resilience to transient data errors that is not
available from any other fault tolerance patterns. However, its primary advantage is the
simplicity with which it can be understood and implemented.

3.2.2.8.1.6 Client-Server Interactions. Examples of how a client-server interface can
support client replication include:

• The client-server interface may be designed to allow the clients to readily subdivide data

distribution among multiple peers, simplifying the ability to implement scalable peer-
clients.

• The client-server interface may allow the clients to specify a multicast address for data
distribution or for request results, supporting replication techniques that provide full
availability by instantiating duplicate running copies.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 58

• The client-server interface may allow a state transfer to occur when a new member
subscribes, simplifying the initiation of new client replicates.

3.2.2.8.2 Guidance

The system should be resistant to faults in processors, network components, system
software, and application computer programs. Component replication should be the primary
mechanism for achieving fault tolerance. The guidance is as follows:

1. All OA time and mission critical components should be replicated for fault tolerance. In
this context, time critical is defined as components for which reloading from a backup
media is not adequately responsive. Components should be designed and implemented
in accord with the appropriate replication strategy and fault tolerance design pattern.

2. OA components that are not time critical may be designed to be restartable under the
control of the system dynamic RM capability. For such implementations, Checkpointing
may be a viable state data restoration strategy. Other strategies for fault tolerance,
including those applicable to time critical components, may also be used.

3. Under normal conditions, each load sharing replicated component will actively share the
processing load for the particular function. A minimum of two instantiations (or
replicates) of any process on a mission critical path should be executing to support fault
tolerance.

4. Metrics for assessing fault tolerance should be defined and performance thresholds
should be established. The metrics will be used by the RM capability (see Section
3.2.3.8) to manage resources. System degradation should be measured in terms of task
completion, timeliness and data integrity at a minimum. Further investigation is required
to define specific mechanisms.

5. Detection of a fault in a processor, network component, or software component that
results in loss of the component’s capability (e.g. a fault that is not masked by network
redundancy) should result in automatic shifting of the component’s processing load to a
replicated component. This may be a shifting of load to already active instantiations or
may require that additional instantiations be replicated and activated to facilitate load
redistribution. Detection and recovery times should be equal to or better than existing
NWS requirements.

6. Each tactical component process should be independent of other components with regard
to fault tolerance to the degree practicable. A failure in one process and the subsequent
recovery actions associated with restoration of the capability should not require that
other tactical components be replaced in unison except in limited situations when
dependencies have been determined to be unavoidable. Each non-failed component
should respond properly as the failed process recovers. Load sharing provisions are
discussed in Section 3.2.2.9

7. Multiple simultaneous process failures (e.g. loss of a cabinet containing multiple
processors) should be treated as a series of independent failures. The failure
management capability should queue all pending recovery actions and order them to
ensure that, based upon recovery dependencies, multiple recoveries of the same
component do not occur.

8. The fault-tolerant implementation should be designed to execute in a unified fashion
across all OACE components. That is, for application components utilizing multiple

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 59

OACE technologies, the varying characteristics of OACE shall be considered in
component design. The use of fault tolerance features from multiple OACE technologies
should not adversely impact application component fault tolerance performance with
respect to fault tolerance metrics.

9. Due to its high cost, use of N-version replication should only be used when absolutely
necessary.

3.2.2.9 Scalability

This section provides rationale and guidance for ensuring that OA components with high
volume and large dynamic ranges of computational demand are designed for scalability.

3.2.2.9.1 Description

The term “scalability” has multiple meanings. In summary, these meanings of scalability
are as follows:

 Resource scalability
 Functional scalability
 Load scalability of load sharing

The first form of scalability denotes the ability of the system’s design and implementation
to accommodate incorporation of additional computing resources. Hence, networks promote
scalability by making it easy to add additional computing resources.

The second type of scalability is the ability to add new functional capabilities without
disrupting existing functional capabilities. The client-server model promotes functional
scalability by allowing new client functions to access existing servers without disrupting other
clients already using the server. However, adding new clients can potentially increase the need
for increased load sharing for the server.

Finally, application components may themselves be made scalable to varying processing
and input/output loads via architectural design patterns and load-sharing mechanisms. It is this
last form of scalability that is discussed in this section. Two methods for implementing
scalability are discussed, functional partitioning and replication.

3.2.2.9.1.1 Load Scalability by Functional Partitioning. Load scalability may be
implemented by sufficiently partitioning a component’s processing algorithms or application
tasks so that the resulting executable processes can be spread across a number of processors and
nodes. The partitions should be selected carefully so that the system can withstand, with a
reasonable margin of safety, the maximum anticipated load. Common partitioning patterns
include pipelining and paralleling. These patterns are shown in Figure 9. In the upper part of the
figure, the boxes (p1, p2, etc.) represent pipelined components. Each process processes its inputs
and passes outputs on to the next component in the pipeline. In the lower part of the figure, each
of the parallel functions (f1, f2, f3) processes data of a particular type; different from data
processed other functions.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 60

Pipelining is used when multiple separable computations should be performed serially on
a set of continuous updated data. It is most effective when the computational and input/output
load has a clear upper boundary. Typical applications include sensor data processing. In
pipelining, computations are split between an appropriate number of applications. Ideally, each
application requires an approximately equal time to process each set of data. This maximizes the
utilization of the processors. If one computational application requires significantly longer than
the other applications in the pipeline, it may introduce a performance bottleneck that interferes
with the throughput of data. As each application finishes its computations on a given set of data,
it passes its results to the next application in the pipeline and retrieves the data from the previous
computation. The result is a relatively continuous, ordered flow of data and processing that can
be spread across multiple processors.

Paralleling is applied for components that have computations that lend themselves to
simultaneous execution. One application distributes the necessary data to multiple computational
clients. When all computations are complete, a server that represents the endpoint of the
processing may synchronize and synthesize the resulting data as required. As in pipelining,
paralleling behaves optimally if all computations require roughly equal time, particularly if
synchronization of the computations is required at the endpoint.

An example of paralleling includes doctrine processing. In doctrine processing, multiple
types of doctrine (e.g. weapons doctrine, display doctrine, etc.) may be in use at any time, and

Pipeline pattern

Parallel pattern

p1 p2 p3 p4

f1

f2

f3

Pipeline pattern

Parallel pattern

p1 p2 p3 p4

f1

f2

f3

Figure 9. Partitioning Scalability Patterns

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 61

multiple doctrine statements for each type of doctrine may be active. A component may be
allocated to each doctrine type, and potentially for each active statement of a given type. Each
track can then be compared against each of the active doctrine statements virtually
simultaneously.

Combinations of architectural patterns may also be used to enhance scalability. For
example, a component may use paralleling, while one of the parallel paths comprising that
component uses pipelining. Additionally, each component in the partitioned component may use
other architectural patterns that support other key design characteristics. For example, a
component in a pipeline may use an active replication pattern for fault tolerance.

Scalability through partitioning provides good scalability within the limits of the intended
range of load. It does not, however, provide support for dynamically adapting to changing load.
It is extremely useful where the load is known a priori to be bounded within a given range, and
where there is no significant advantage in being able to reclaim resources when the load is low.

3.2.2.9.1.2 Load Scalability by Replication. Another method for providing scalability
is through scalable process replication. With scalable replication, process replication is used to
enable load sharing. Each replica of a load sharing performs a portion of the total workload.
Different techniques for scalable replication may be required for clients and servers. Clients that
are replicated for load sharing are called peer-clients. Servers that are replicated for load sharing
are called scalable servers.

Figure 10. Load Sharing by Replication, illustrates the use of replicated processes (R1,
R2, and R3) to achieve load sharing. Each replica processes a subset of the incoming workload.
Unlike the case of paralleled functions illustrated in Figure 10, where each function processed a
different type of data, the replicas will process different instances of the same kinds of data.

A high-volume server is a server that has a significant likelihood of causing starvation of
its clients due to the number of clients, the number of requests, or the quantity and frequency of
data it is distributing. When a high-volume server becomes backlogged, it has the potential to
interfere with mission critical processing, either directly or indirectly through some other inter-
process dependency (similar to priority inversion).

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 62

The likelihood of encountering a high-volume server backlog can be reduced through the
implementation of scalable servers. Scalable servers can distribute a load by a number of
different methods. A method appropriate to the loading characteristics and synchronization
requirements of each server should be chosen. Some methods for consideration include:

 Assigning each scalable server a different set of clients.
 Assigning each scalable server a different set of data/resources.
 Providing a coordinator that assigns each new request in an unbiased manner (e.g., round

robin, or least load) to a different scalable server for processing.

Regardless of the method chosen, scalable servers should be capable of self-managing the
load assigned to each replica. Typical methods for achieving this include the use of deterministic
algorithms by which responsibility is determined, and assigning one replica as a coordinator for
establishing/re-establishing load delegation. The method chosen often depends on the nature of
the load.

Similar to high volume servers, client components can become overloaded with
information that needs to be processed. Scalable replication, in the form of load sharing peer-
clients, is one way to overcome this situation. Each load-sharing peer executes as a separate
process. The peers divide load through the use of a load-sharing algorithm contained within the
replicas. This algorithm allocates a unique portion of the processing to each peer. The algorithm
should account for the number of replicas in the system at any given point in time in addition to
the type and quantity of the load. This information is used to divide the processing of data in an
approximately even distribution across all peers. When the number of peer replicas changes, the
processing load is readjusted at each peer. Other conditions that might require load readjustment
may include changes in the type of load and or significant imbalance in the load distribution. In
general, minimal coordination is required among the peers beyond the adjustment of load that
occurs upon peer initialization or termination/failure.

The peer-client approach can potentially increase application performance by decreasing
the overall load on a single computer. Such increases in performance need not double

Figure 10. Load Sharing by Replication

Replication pattern

R1

R2

R3

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 63

performance to provide benefits to the overall system. For example, the peer-client approach can
be used to dampen the detrimental effects of a failure in the system by manipulating the number
and placement of peers, thus distributing the impact of failures throughout the system. Peer-
clients may also improve fault tolerance by increasing the number of processors that should fail
before a function is lost. Finally, the ability to increase, migrate, or decrease peer components
facilitates dynamic run-time load leveling as a means for maintaining optimum system-wide
utilization.

Scalable replication provides the ability to adapt a system dynamically for a wide range of
loads. Caution must be exercised in the design and implementation of scalable replication
solutions, as changing the scalability of a component can potentially affect the overall system
dynamics and may alter the performance of other components. The implementation of scalable
replication can be significantly more complex than solutions that utilize computational
partitioning. It can be especially complex when the component involved should maintain state
data. However, scalable replication provides support for fault tolerance in addition to scalability,
making it an excellent choice for mission critical components that should be fault tolerant and
have significant or a varying range of load.

3.2.2.9.2 Guidance

OA should choose appropriate load sharing mechanisms to achieve scalability. In
particular, the following guidance applies:

1. For components whose loads are predictable and have an upper bound, architecture
patterns should be leveraged that divide computational responsibility across multiple
executable processes. The partitioning should be selected such that the component is
capable of handling the maximum possible load.

2. Where partitioning is used to support scalability, fault tolerance patterns should be
considered to provide component availability.

3. Where the loads are highly variable, scalable replication should be utilized to maximize
resource utilization.

4. Scalable servers should be designed to facilitate instantiation of one or more replicas
across which load are distributed. An appropriate method for distributing load across
these servers should be used. Replication patterns that support state data synchronization
should be considered for servers that have state data maintenance requirements.

5. To the degree practicable, scalable servers should be capable of self-managing the load
distribution across the set of available replicas. They should be capable of the
assignment of load and reallocation of load as the availability of replica change, without
external intervention from a resource manager, except possibly for the notification of
change in the number of replicas.

6. The peer-client design pattern should be employed for clients where a wide dynamic
range of computational requirements makes its use beneficial.

7. In a peer-client design, the work of a client should be divided into n components known
as peer-clients or replicas. For N peer-clients, each peer should concurrently perform
approximately 1/N of the overall load. When a peer is lost, the remaining peers should
assume a larger proportion of the work in accord with a deterministic algorithm (e.g.,
1/(N-1) of the load). Conversely, adding a peer to the system should reduce the load on

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 64

each peer (e.g. to 1/(N+1)). Component state data synchronization may be required
between peers, which appropriate design patterns for fault tolerance and state data
synchronization should be evaluated.

3.2.2.10 Real-time Performance

This section provides rationale and guidance for ensuring that OA components are
designed so that both hard real-time and soft real-time requirements are met.

3.2.2.10.1 Description

NWS functions are characterized by varying degrees of timeliness requirements. These
range from human-paced decision-making to soft real-time background and throughput
processing to hard real-time sensor and weapons management. Each of these requirements
should co-exist smoothly in an open distributed combat system.

3.2.2.10.1.1 Real-time Processing. Real-time processing is an oft-invoked but not well
understood term. For purposes of discussion, we consider four classes of processing
requirements. As would be expected, all four classes are characterized in some regard with
respect to the timeliness of their performance. Note that these classes are qualitative only for
explanatory purposes and are not intended for rigorous analysis.

• Non-real-time — no timeliness related requirement other than user inconvenience

• Soft real-time — time related processing requirements for which there is no sudden and
distinct drop-off of computational value as with hard real-time, see below; rather the
value of the soft real-time computation become progressively more important as time
passes; such computations are typically scheduled at a lower priority level than hard real-
time computations in order to insure that they do not starve out hard real-time deadlines

• Hard real-time — processing requirements, often but not always periodic in nature, for
which failure to meet a processing deadline will result in serious, possibly fatal
compromise of system operation or integrity; such requirements are almost always
grounded in the physics of the problem being solved and require operating systems with:
1) multiple execution priority levels, 2) tightly bounded critical region execution times,
and 3) control for priority inversion

• Extreme real-time — processing requirements with such low service latencies, often
measured in microseconds, that normal relatively full featured operating systems deliver
insufficiently fast response and for which tightly crafted kernel executives must be used
to meet latency requirements

The terms hard real-time and soft real-time are often used to characterize computing
timeliness requirements. In distinguishing between these two terms, some authors suggest a time
domain dividing line – often associated with periodic, (e.g., < 1 millisecond, < 100
microseconds, etc.). However, this approach is not sufficiently descriptive to be fully useful. For

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 65

example, it is difficult to reach agreement on the precise value of such a boundary. Different
application domains tend to produce different boundaries.

More importantly, many practitioners consider hard real-time to be associated with a
requirement for deterministic performance characterized by guarantees of bounded response
times and latencies for operations, service calls and information transfer. In this context, soft
real-time systems are those for which similar tightly bounded responses are not required.

In a practical sense, such applications are most often associated with physics-based
computing requirements (e.g., in sensor and actuator control applications). A widely accepted
body of theory is available for analysis of periodic processing with mandatory deadlines – the
rate monotonic theory. Systems to which rate monotonic analysis may be applied are sometimes
considered to be synonymous with hard real-time.

Hard real-time requirements of the type described in the preceding paragraph are
generally based on the physics of the problem, and they are often used to insure that certain
physics based error bounds are observed. By controlling the timeliness of computations, the
physics of the problem are controlled. For example, the loop update rate for missile midcourse
guidance uplink commands derives from error containment requirements associated with the
missile guidance process. In effect, the missile guidance update periodic contains a designed-in
safety margin. If these bounds are exceeded, the missile may depart from the trajectory required
for target interception. While such computational requirements may not require microsecond
level scheduling granularity, they are nevertheless vital to correct system operation.

Note, that, even if absolute microsecond level “hard real-time” deadlines are not needed,
there still exist timeliness bounds beyond which deferral of the computation will result in drastic
negative consequences for system operation. In the example of the previous paragraph, the
missile error bounds referred to may quickly be exceeded if an update is not available for too
long a period. For this reason, both component design and overall system design should carefully
implement mechanisms for controlling flow of control during system operation. This is
particularly true in the presence of dynamic RM. Component thread design, buffering
mechanisms and priority assignment should be done in a manner consistent with system
engineering objectives and in recognition of the interaction of the flow of control characteristics
of operating systems and communication mechanisms.

Proper utilization of these control mechanisms during component and system design is
the key to simultaneously meeting “hard real-time” requirements while providing balanced
service for remaining computational tasks.

3.2.2.10.1.2 Quality-of-Service. Closely associated with real-time is the concept of
Quality-of-Service (QoS). QoS is often associated with network and information transfer
characteristics. A common usage relates to the interactions between network communications
paths and applications that are designed to seek a defined level of network throughput and/or
latency. Sometimes network QoS is expressed in terms of “jitter,” a variation in time of arrival
of network packets at a destination. In either case, applications operating within a QoS range
will either request a specified QoS from the underlying network infrastructure or they will adapt
their performance expectations to the QoS available from the network. This, in turn, implies that

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 66

the network should be capable of managing and allocating QoS for a variety of users.

In many instances from the commercial world, QoS is a marketable commodity, and
network service providers charge for higher QoS levels. In such situations, cost becomes the
metric whereby user decisions are made concerning (1) what QoS to request from the provider,
(2) what adaptations to make in QoS utilization to remain within defined cost targets. Likewise,
the provider, motivated by profit, may decide how much aggregate resource to make available for
use, based upon market projections and other business considerations.

Parenthetically, it should be noted that such systems generally serve a variety of
customers for whom inter-application interactions and dependencies are negligible. This is
significant for the following discussion concerning real-time mission critical systems such as
Navy warfighting systems – for which strong inter-component dependencies do exist.

While this guidance document incorporates the network QoS concepts discussed above, it
generally employs the QoS idea in a somewhat broader manner. Specifically, the idea of QoS is
expanded to incorporate processor resource use in addition to network use. This is a natural
extension to the QoS concept for large distributed real-time systems. In the latter case, the
components of the system should interoperate, frequently in a strongly interdependent manner.
Thus, the activities of each component are potentially dependent on the successful operation of
many other components.

In this situation, the concept of components negotiating QoS from an independent
market-like service provider has little relevance. Instead, the system – and all of its components
– should use the available resource base in a harmonious and cooperative manner. Furthermore,
both processing and information transfer assets are clearly contributors to the overall successful
operation of the system. This difference becomes even more acute when dynamic RM is
introduced into the equation (see Section 3.2.3.8). In the dynamic RM case, both processor and
network metrics are defined for measurement and management.

3.2.2.10.1.3 Distributed Real-time Systems. Perhaps the most interesting and
challenging case of all is the situation faced by designers of large complex mission-critical
distributed real-time systems. For such systems, both real-time scheduling considerations and
factors associated with QoS (see discussion below) are present simultaneously and sometimes in
the same application. In addition, there are inevitably a substantial number of end-to-end
requirements that transit several real-time programs during their accomplishment. These paths
often implement low latency responses to critical external events.

Furthermore, while discussions of real-time more often focus on periodic and operating-
system scheduling, distributed real-time system designers should inevitably consider as co-equals
the timing characteristics of the information transfer mechanisms, as well as those of the
operating-system scheduler.

Another consideration is the relationship between periodic processing, event-based
processing, and operator control. In large distributed real-time systems; it is difficult to enforce
the structuring mechanisms (such as rate monotonic theory) that provide the theoretical
foundation for guaranteed hard real-time performance. It is not so much that those structuring

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 67

mechanisms are not achievable but rather that implementation of them would inevitably
engender a greater degree of rigidity to the overall system design than is consistent with modern
design practices. Hence, the real challenge for distributed real-time system designers is to ensure
that real-time properties are preserved while designing an architecture and a set of components
that meet the supportability metrics introduced in Figure 11.

Contemporaneously with the emergence of the need to deal with large complex systems is
the development of a number of enabling technologies that were not necessarily invented with
real-time requirements in mind. These technologies include networks, distribution middleware
and dynamic RM. The composability and supportability benefits of these technologies are
compelling; however their suitability for real-time use has not been broadly tested until recently.
Fortunately, the technology base introduced in the preceding paragraph has evolved substantially,
and in many cases it is now fully real-time capable in all but the most stringent applications.

What emerges from this confluence of design objectives, commercial practice and
technology tools is a new system architectural concept that provides a far more flexible basis for
meeting supportability metrics. Rather than using shared memory and fine-grained operating-
system scheduling mechanisms, this approach connects large numbers of components via
networks and middleware-based inter-component communication mechanisms. The new
architecture, contrasted with traditional application program design in Figure 1. Notional OA
Functional Architecture, provides increased flexibility.

In the old style cyclic design, all processing requirements are contained in a fairly large,
multi-faceted application program. Each processing requirement is mapped to one or more time
slices within an overall processing cycle. The total set of requirements is interleaved onto the
available processing resources, either a single processor or a symmetric multiprocessor.
Communication between processing segments is often accomplished via explicitly shared
memory. Synchronization between segments is performed via semaphores, mutexes, locks, etc.

The distributed approach generally separates out processing requirements into a number
of smaller application programs, each of which might have been a processing segment in one
large application in the older cyclic model. The distributed applications communicate with each
other via an inter-process communication mechanism, often middleware. The middleware
provides high level communication semantics, much as a high level programming language
provides a higher level abstraction than assembly language. The middleware often provides
support for reliable communication, multicast, state data conservation, synchronization,
replication and fault tolerance. While the distributed approach may seem profligate in its use of
processing resources, the new architecture trades expanded use of processors and
communication, which has become relatively cheap in today’s environment, for design flexibility
and supportability benefits.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 68

3.2.2.10.2 Guidance

Support for meeting this guidance consists of managing a number of computer resources
in accord with the nature of the real-time problem. In the guidance stated below, an execution
path is a set of processes that should run in succession to perform a complex application
function. A path is initiated by an event, and the processes that occur during path execution may
result in events that initiate other paths. Initiation of a particular path may be conditioned on
completion of one or more other paths. A mission critical path contributes directly to mission
success. Failure to meet timeliness requirements for a mission critical path can result in mission
failure.

1. Process and task/thread priorities should be used when necessary to ensure that mission
critical hard real-time deadlines are met, if necessary, at the sacrifice of soft real-time
deadlines. However, the use of thread priorities to achieve correctness, such as using
priorities to assure that events are handled in the correct order, should be avoided.

2. Management of input/output and throughput processing should be accomplished by
means of queues that buffer program units from each other and prevent busy states in one
part of the system from impacting other parts of the system. Output processing may be
handled through a queue mechanism or through the use of separate threads servicing
different consumers. Also, most commercial middleware products that support threads
(e.g. Network Data Distribution System (NDDS), Object Request Brokers (ORBs)) will
handle the output queuing in a satisfactory manner without blocking the application and
without application intervention. In the event that a lower level communications
mechanism is used (e.g. group communications, TCP, UDP), then queuing of outputs
and an associated thread to send the data is highly desirable.

3. The previous requirement may cause significant performance degradation in synchronous
interactions such as a CORBA 2-way invocation, since the thread is blocked until the

Distributed Design-
New Arch.

Ordered
Multicast

Replicated clients
Replicated servers Process group

server
client

primary

shadow

Fault
Tolerance

Load
Sharing

Autospecial

Auto-SM

Semi-auto

Other Doctrine

Cyclic Design-
Legacy Arch. Start Time

Finish
Time

Advantages
• Efficient
Dependencies
• Fixed, Inflexible
• Limited Ability to Accept New

Requirements
• Costly To Tune & Change

Advantages
• Open, Portable Design
• Fault Tolerant & Scalable
• Less Costly to Maintain
Dependencies
• Depends on Lost Cost Resources
• Requires Middleware Support

Figure 11. Comparison of design models

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 69

application gets around to responding. Exceptions to the previous requirement include
three cases: (1) when processing requirements for input is small (e.g., updating a data
item in an internal data store); (2) processing of high urgency inputs; and (3)
synchronous interactions such as remote procedure call (RPC) style request/reply
interactions.

4. Mission critical execution paths in applications hosted by the OACE should be identified
and described in terms of process sequence and timeliness requirements (e.g., hard vs.
soft real-time, time in which process should complete). Timeliness requirements should
be specified for each process in the path and for the path as a whole. (Note: The
timeliness requirements will be employed by the RM capability (see Section 3.2.3.8) to
predict and manage replication, load leveling or component migration.)

3.2.2.11 Process, Thread and Memory Management

This section provides rationale and guidance for designing efficient real-time
multithreaded OA components that ensure correct operation. The section discusses techniques
for ensuring that OA components are designed to avoid, as required, the inefficiencies and
unpredictability of run-time memory allocation, thread creation and garbage collection. Also, it
provides guidelines to ensure that processes and threads are not hard mapped to specific CPUs in
processors with more than one CPU. Generally, it is desirable to avoid mapping of threads to
specific CPUs; however, this may not be feasible in all cases (e.g., due to poor cache
performance or to improve I/O performance). Use of such mapping should be justified by the
designer and approved as an exception when necessary. Finally, data protection and access
synchronization are part of the overall requirement to preserve data integrity in mission critical
and safety critical systems.

3.2.2.11.1 Description

With modern languages and operating systems, it is possible to defer binding of many
system resources until runtime. This has the advantage of flexibility of operation, but it also has
the disadvantage of potential inefficiencies and lack of predictability during operations. Since
efficiency and predictability are extremely important aspects of most real-time systems, pre-
allocation of computing resources such as memory, processes, threads, file descriptors, etc. is
strongly recommended. The preferred design approach to control these potential sources of non-
determinism is through the use of pre-allocated pools of memory and threads.

Memory allocation is a good example. Programs can allocate memory from a global heap
at runtime. Such programs can also release memory during operations. Over time, the global
memory heap is almost certain to become fragmented or exhausted unless mechanisms are
provided that enable the operating system to reclaim and reorganize unused memory. If not
carefully planned as a part of the real-time flow of processing, this activity, called “garbage
collection,” can adversely impact the operation of a real-time system. In particular, for creating
real-time applications, programming language facilities where unused memory disposal and
garbage collection are performed automatically should be scrutinized carefully in light of their
ability to compromise application determinism.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 70

For a variety of reasons, real-time computer programs are often multithreaded. Threads
may be defined to support periodic, event handling, communication with other programs and
devices, etc. In multiprocessor systems, it is often possible to constrain individual threads to
execute on specific processors. Such constraints usually make programs dependent upon the
implementation details of the specific computer – which in turn makes them difficult to maintain
and port to other processors.

In reliable systems, access to data shared among processes and threads should be
synchronized and sequenced in order to preserve data integrity, e.g. to prevent corruption of the
shared data. A thread-safe object, unit of code, or component is one that can be executed by
multiple threads in a virtually simultaneous manner without unintended interactions or side
effects. To achieve this, certain standard mechanisms should be used.

3.2.2.11.2 Guidance

The scheme most often used for accommodation of the run time range of processing
requirements of real-time systems is pre-allocation of pools of resources. In addition,
programmer-supplied services are needed to explicitly manage withdrawal from and return to the
pool. Process, thread and memory management guidance is as follows:

1. To promote portability and flexibility of design, tactical component threads should not
be mapped to a specific processor. There is one exception to this: Real-time programs
are usually I/O intensive. Mapping I/O interrupts and processing to a processor
dedicated to handling the I/O stream can lead to more efficient use of the remaining
processors and is therefore not excluded.

2. Thread safe methods should be used for synchronization of shared data and access to
non-reentrant service routines by multiple threads. Such mechanisms include low-level
operating system semaphores, adaptive middleware or framework thread-safe libraries,
and language-based run-time support structures that provide inherent synchronization
semantics, e.g. Ada and Java. Where high-level language constructs support such
synchronization with sufficiently low latency, the high-level language constructs should
be used.

3. When possible, object-encapsulation mechanisms and thread-safe access mechanisms
should be used to encapsulate data that is not needed external to the thread (i.e., such
data should be encapsulated within the visibility of the thread).

4. Thread priorities should be established in order to ensure that urgent processing, for
which defined latency requirements exist, are able to preempt processing of lower
importance, except in cases where state data consistency would be affected negatively by
the use of thread priorities.

5. For mission critical components, process priority distinctions should not be required to
ensure correct system operation and satisfactory performance. Operating system
scheduling management of execution flow should be implemented by means of thread
priorities. Thread scheduling considerations are the primary determiner of real-time
performance, even for situations where multiple components are allocated to the same
processor. Process priorities, if used at all, should be confined to setting non-mission
critical process priorities to a low level so that such processes do not interfere with
mission critical components.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 71

6. Mission critical applications should only allocate heap memory at run time as an
initialization activity.

7. Whenever possible, applications should actively manage system resources such as
memory allocation and reallocation, even if this management should be performed in
application code. Management of dynamically allocated assets such as garbage
collection should be entrusted to system software only where system mechanisms exist
by which applications can control the flow of processing associated with the system’s
management of those run time allocated resource. Such mechanisms should be used by
the application so as to ensure that system dynamic asset management operations do not
interfere with the operation of mission critical components.

8. Careful consideration should be given to the number of threads employed by real-time
components. Developers should not construe this to imply that threads are not to be
used, but rather that they should not be used indiscriminately, as they can consume
significant memory resources and may affect the efficiency of some schedulers.
Consideration should be given to the use of thread pools rather than hard assignment of
threads to tasks, where a sizable number of predominantly idle threads might otherwise
be required.

9. Components should maintain precise control of the accretion, use and disposition of
system resources (memory, threads, devices, system services, etc.), so that at shutdown
time they can either return such resources to the operating system or a system-wide
resource control capability can ensure that the resources are released cleanly.

10. All memory and thread management should be performed in a thread-safe manner (i.e.,
access to data structures and non-reentrant service routines that may be shared among
multiple threads should be protected by thread-safe mechanisms as discussed in Item 3
above.)

11. Object-oriented software components should avoid unnecessary object instantiations, as
each object instance requires system resources. Furthermore, when an object is no
longer needed, it should be explicitly deleted or marked for deletion by the language’s
garbage collection mechanism.

3.2.2.12 Data Brokers

This section provides rationale and requirements for providing data broker and/or layered
adaptation mechanisms to accommodate interfacing to legacy capabilities.

3.2.2.12.1 Description

Data brokers are translator components that are positioned between two or more disparate
systems to facilitate communications. They adapt the electrical interface, protocols, formats, and
syntax of one system to that of another. Since the data broker itself is software that should be
developed and maintained, this solution leads to increased development and maintenance cost,
albeit likely a small increase. Furthermore, data brokers are only useful in situations when
performance objectives are not adversely impacted by the overhead that the data broker adds.
Thus, a data broker is a compromise solution and it should only be used when large-scale
modifications to either of the interfaced systems are prohibitive due to cost or schedule.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 72

Data brokers provide a standardized, consistent API for legacy applications that, when
employed, “translate” the data representation of messages into one that is compliant with the
OACE architecture. Conversely, information that is sent to the legacy system from the OACE
architecture is translated into a data representation that is compatible with the legacy system.
Data brokers permit the phased implementation of the OACE architecture by insulating legacy
applications. Furthermore, when properly designed, data brokers ensure that changes will not be
required in the OACE components if and when the legacy components are modified to become
OACE compliant.

Adaptive layers, generally provided as linkable libraries, confer similar isolating services.
The adaptive layer exports an interface that hides the details of the legacy system to which
communications should be maintained.

The use of data brokers and adaptive layers will contribute to reduce efforts in
maintenance and upgrades by isolating the legacy applications from OACE.

3.2.2.12.2 Guidance

The guidance for legacy capture within OA is that a data broker and/or adaptive layer
approach may be used to interface with legacy components.

3.2.3 Open Architecture Computing Environment

The technology base, or infrastructure, for OA is referred to in this document as OACE.
Since tactical applications will be implemented as a set of loosely coupled software components,
the fundamental requirement for OACE is to provide a distributed real-time computing
environment for NWS elements in the future. For these elements, issues of fault tolerance,
timeliness, scalability, expandability, and maintainability are vital.

OACE is a high-performance computing environment for distributed processing, and it is
capable of controlling and executing distributed tactical applications. OACE provides a common
computing environment with services for application loading, resource management, inter-
application communication, fault tolerance, and adherence to real-time application requirements.
The resource base controlled by OACE consists of a set of computers, internal and external
network interconnection equipment, network media, operating and control software,
communication software, and interface software. Distributed application software will load and
execute in the OACE environment.

Listed below are a number of key technical attributes of the OACE:

• CORBA inter-component distributed object mechanisms when performance permits
• Distribution of continuously refreshed data via publish/subscribe protocols
• Maintenance of state data coherency via group/ordering protocols
• Dynamic resource management, with allocation of portable processing components (i.e.,

“run-alike” across brands, operating systems, etc.) onto a pool of virtually homogeneous
computers; see discussion in the Guidance section of 3.2.3.3 Computing Resources.

• Instrumentation data from operating systems, network components and applications

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 73

• Integrated failure management services across infrastructure components
• Information security integration with RM
• Processors with suitable responsiveness and queuing of I/O interrupts
• Effectively uniform switch interconnect with QoS features, e.g. the network Resource

Reservation Protocol (RSVP)
• Time synchronization via system-wide service (e.g. Network Time Protocol (NTP))
• Open, standards-based COTS products (as near mainstream as possible)

The architecture of the OACE supports the principles, structure, and components that
form the basis upon which the application components of OA are built. Thus, the attributes of
the OACE support development of application components in accord with the guidance
contained in Section 3.2.2. It includes technologies needed to provide guaranteed QoS to real-
time applications. Figure 12. Open Architecture Computing Environment illustrates the
functions and interrelationships of OACE.

Figure 12. Open Architecture Computing Environment

Note that this representation is given in functional form and does not necessarily
represent a physical design. For example, three classes of communication protocols are shown:
distributed objects, publish-subscribe and group-ordered communications. These classes exist as
separate tools at present, forcing designers to select one and only one of the three for a particular
interface; however this may not be true in future products. Current middleware marketplace
evolution appears to be in the direction of combined functionality in a single product (e.g., a
fault-tolerant CORBA based upon group communications with publish-subscribe functionality).

O/S Adaptation Layer

Appl. Ctrl
Agent

Network
Monitor

Replication
Services

Group
Ordered

Distributed
Objects

Publish
Subscribe

Name
Service

Failure
Monitor

Resource &
QoS Broker

Resource
Utilization

Time
Service

Mid-level
Protocols

Low-level
I/O

Application
QoS Broker

Computer / Network Hardware

Operating
System

Computer

Server
ApplicationNetwork

QoS Broker

Process
Failure

Network
Hardware

Computer

Process
Startup

Physical Media

Network
QoS

Auto-
Config.

Security
Services

Client
Application

Security
Agent

Resource
Control

QoS
Specs.

Security
Mgt.

Appl. QoS
Mgt. & Neg.

Resource
Allocation

Resource
Mgt. & Neg.

Enterprise
Mgt.

User
Requirements

B A

B

A

O/S Adaptation Layer

Appl. Ctrl
Agent

Network
Monitor

Replication
Services

Group
Ordered

Distributed
Objects

Publish
Subscribe

Name
Service

Failure
Monitor

Resource &
QoS Broker

Resource
Utilization

Time
Service

Mid-level
Protocols

Low-level
I/O

Application
QoS Broker

Computer / Network Hardware

Operating
System

Computer

Server
ApplicationNetwork

QoS Broker

Process
Failure

Network
Hardware

Computer

Process
Startup

Physical Media

Network
QoS

Auto-
Config.

Security
Services

Client
Application

Security
Agent

Resource
Control

QoS
Specs.

Security
Mgt.

Appl. QoS
Mgt. & Neg.

Resource
Allocation

Resource
Mgt. & Neg.

Enterprise
Mgt.

User
Requirements

BB AA

BB

AA

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 74

This architecture provides the capabilities and infrastructure needed to construct multi-
component, replicated, distributed object real-time systems. The structure is repeated throughout
the computers of OA. Thus, although the diagram elaborates the technology base for a computer
containing a client component, the computer hosting the server application contains a comparable
structure. Also executing within the distributed system's collection of computers is a set of RM
components that interact with the computers, network components and applications of the
distributed system to provide QoS management.

The OACE reference architecture, shown in Figure 12. Open Architecture Computing
Environment, focuses primarily on the infrastructure of operating system and third party software
needed to support OA warfighting applications. There is a corresponding physical network and
computing equipment architecture as well. Key elements of the physical architecture are shown
in notional form in Figure 13. Notional Physical Architecture. The underlying technology
components of that physical architecture are discussed in this section along with software
infrastructure components.

Several amplifying comments should be noted. First, the core of the architecture is a
redundant platform-wide Layer 3 switch configuration. Layer 3 switches provide both switching
and routing capabilities. Second, the overall architecture subdivides into a number of computing
domains. Each of these domains may potentially employ a different technology base from other

Layer 3
switch/router

Layer 3
switch/router

Tactical Displays

Primary mission computing

Non-real-time
e.g. IT21

Embedded
& legacy

e.g sig pro

Unique domains
e.g. HM&E sensors

Security
gateway
Security
gateway

High security
enclave

S
t
o
r
a
g
e

Administrative
unclassified

System highSystem high

Limited accessLimited access

UnclassifiedUnclassified

KK

External

RR

RR

KG / TAC LANEK KG / TAC LANEKG / TAC LANEK

Security domains

High avail.
switched
High avail.
switched

Std.
LAN
Std.
LAN

Non-
critical
Non-
critical R Routed

linkRR Routed
link

Interconnect domains

LL

Tactical
links

Link
broker

I
n
t
e
g
r
a
t
e
d

F
e
d
e
r
a
t
e
d

OACE
Scope

Figure 13. Notional Physical Architecture

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 75

domains. Within a domain, separate network and switching technology may be used if needed
for performance reasons, e.g. for signal processing. Specifics are system and implementation
independent. Third, the architecture partitions out information security concerns into separate
domains, with security gateways providing isolation and access control. Finally, the primary
concern of this guidance documentation set is the mission critical set of resources at the center of
the diagram (denoted by dotted box and gray shading). This should include all warfighting
applications that are candidates for commonality of implementation as well as those mission
critical applications that are unique to a particular platform. While not all such applications have
real-time requirements, many of them do. The domains identified are as follows:

• Mission critical warfighting
• General purpose support and planning
• Non-real-time administrative
• High security enclaves
• Legacy and high performance embedded
• Special purpose, e.g. HM&E

Within the mission critical domain, several types of computing resources are identified:
1) federated computing assets, 2) integrated computing assets, 3) tactical displays, and 4) storage.
The utility of displays and storage is perhaps self-evident. The reasoning behind representing
both federated and integrated computing resources was discussed in Section 3.1.3 Federated vs.
Integrated Architectures. These two differing allocations of assets represent the difference
between an approach where each developer brings its own independently chosen computing
resources vs. the total ship computing approach, wherein a common pool of like resources is
shared between a number of systems and subsystems.

The following list constitutes the set of technologies considered under the scope of
OACE:

• Physical Media
• Cabinets
• Information Transfer
• Computing Resources
• Operating Systems

• General Purpose
• Real-time

• Adaptive Middleware
• Distribution Middleware

• Distributed Object Computing
• Publish-Subscribe Protocols
• Group Ordered Communication Protocols
• Data Parallel Protocols

• Frameworks
• Information Management
• Resource Management

• Information Recording and Assessment

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 76

• Failure Management
• Information Assurance Services
• Time Synchronization Services
• Programming Languages

Each layer constitutes a part of the underlying technology base and is discussed in the
sections that follow. Table 5. OACE Guidance Index provides an index to the location of each
discussion.

Table 5. OACE Guidance Index

Category Paragraph Page

Cabling and Cabinets 3.2.3.1 76
Information Transfer 3.2.3.2 77
Computing Resources 3.2.3.3 79
Peripherals 3.2.3.4 82
Operating Systems 3.2.3.5 82
Adaptation Middleware 3.2.3.6 84
Distribution Middleware 3.2.3.7 84
Frameworks 3.2.3.8 88
Dynamic Resource Management 3.2.3.9 89
Instrumentation 3.2.3.10 92
Failure Management 3.2.3.11 94
Information Assurance 3.2.3.12 95
Time Service 3.2.3.13 96
Programming Language Facilities 3.2.3.14 97
Displays 3.2.5 98
System Test and Certification 3.2.6 99
Selection of Standards 3.2.7 100
Open Source Products 3.2.7.2 101

The OACE provides a critical set of functions required for the proper operation of
applications components within OA. Among these characteristics is a capability for the OACE
to monitor itself. Another is portability of the OACE technology base across a variety of COTS
products and standards from which future technology refreshes are likely to be chosen. COTS
hardware and support software is expected to evolve rapidly. Therefore, the OACE should be
designed to support cost effective modification, addition, and replacement of hardware and
software components.

3.2.3.1 Cabling and Cabinets

This section provides rationale and guidance for the cabling plant and cabinet architecture
of OA. The computing resources need not be accommodated within the footprint and
connectivity constraints of existing cabling and cabinetry if sound technical and business case
reasons exist for making changes.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 77

3.2.3.1.1 Description

New construction ships are free to use the latest cabling and cabinet technology.
However, as stated in Section 3.1.3 , the decision of whether to conform to existing cabling and
cabinet constraints for backfit implementations is a cost-benefit tradeoff. An OA re-
implementation of existing tactical programs will almost certainly fit inside current cabinet
footprint on most ship classes with minimal effect on legacy I/O nodes. However, the network
switching design is likely to be quite different, due to the presence of more computing nodes.
Additional study will be required to determine if the installed base of fiber can handle it, despite
its relatively flexible patch-panel-based design.

3.2.3.1.2 Guidance

Guidance for use of existing cabinet footprint and cabling is as follows:

1. OA should not impact compatibility with the cable plant design on existing ships unless
there is a business case reason for doing so.

2. OA should be designed to facilitate installation of its components in equipment
enclosures that meet space and weight budgets for legacy ships. Physical design
constraints should apply to cabinets, computer subassemblies, junction boxes, network
media, and all other items comprising the physical manifestation of OA.

3.2.3.2 Information Transfer

This section provides rationale and requirements for designing the OA information
transfer capability. The goal is to ensure that information transfer bandwidth and latency
requirements are met and that no single location within the network represents a constraint on
information flow or process to processor allocation. This latter feature is intended to support the
allocation and reallocation of processing tasks at run-time.

3.2.3.2.1 Description

The network will provide the primary means of information transfer within OA. While a
limited number of point-to-point interfaces will continue to exist for some time, NWS elements
will continue to migrate toward a full-network implementation. Programmatic and technical
execution plans for system migration to OACE are ongoing for both Aegis and SSDS, for
instance.

3.2.3.2.1.1 Basic Network Functionality. Three basic functions provided in the
information transfer infrastructure are connecting a processor to the network; interconnecting all
the components on a single network; and connecting networks together. In an OA, these
functions are to be provided by (1) network interface cards (NICs), (2) switches, and (3) routers
respectively.

A NIC is the means by which a processor accesses the network to send or receive data. A
NIC is required for each type of networking technology used by a processor, e.g., Fast Ethernet,
Gigabit Ethernet, or Asynchronous Transfer Mode ATM.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 78

A switch is a networking device that receives and transmits data on a number of ports.
Unlike shared network architecture, a switched architecture dedicates each port on a switch to the
device connected to it. In other words, a processor connected to a Fast Ethernet switch has a
dedicated 100 Mbps path to transmit and receive data. The internal components of the switch
temporarily connect switch ports in order to enable transfer of data to other computers or to
additional switch components. The number of active ports a switch is able to realistically
support depends upon the throughput of the backplane of the switch.

Routers provide for the forwarding of data across different networks (a network is defined
here as a single broadcast domain). Routing functionality may physically be provided in switch
hardware, but the functionality is distinct from an architectural perspective.

3.2.3.2.1.2 Communication Mechanisms. Three basic communication mechanisms
exist in the information transfer infrastructure: Uni-Cast, multicast and broadcast. Uni-Cast
messaging involves a sender transmitting a message to a single receiver.

Both multicast and broadcast involve a sender transmitting to multiple receivers. The
functionality of these two mechanisms is distinguishable at two layers. At the higher Internet
Protocol layer, broadcast messages are transmitted to all receivers within the defined domain.
For multicast, a sender transmits to a selected group of receivers defined by membership in a
multicast group.

The way in which the higher layer message is instantiated on the lower layer depends
upon the type of network media being utilized (e.g. ATM, Ethernet). Broadcast and multicast
messages from the higher layer are transmitted as broadcast messages at the lower layer in a
shared media. Techniques such as Internet Group Management Protocol (IGMP) snooping have
evolved in shared media to filter multicast messages to just those members of the multicast
group. When one or more senders should transmit the same message to multiple receivers,
multicasting is more efficient than point-to-point uni-casting.

3.2.3.2.1.3 Additional Network Features. The network should also support one of
Open Architecture’s most important design characteristics: deferred binding of program
components to physical resources. Middleware supports deferred bindings by providing location
transparent communication services. RM supports deferred bindings through a capability to
assign computational components to physical computers just prior to operations, or even
dynamically, as the system runs.

Another key requirement is that the network should provide uniform service performance
to real-time applications. Dynamic RM (DRM) enables much more flexible binding of
computing tasks to processors. Potentially, DRM can allocate any program capable of running
on the real-time computing unit (see Section 3.2.3.3) to any computer of this class. The corollary
to this allocation capability is the fact that any computer within this class may eventually
originate a message destined for any other computer of like class in the system.

For this reason, all paths through the network connecting real-time units of computing
resources should be effectively uniform in performance, or at least they should provide a
specified minimum performance. In other words, each network path should be equally capable

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 79

of supporting the overall required latency and throughput requirements for inter-computer
message traffic between mission critical components.

Switched networks are most likely to possess this virtually uniform performance
characteristic. For such networks, the uniformity of performance requirement is generally only a
concern on the individual switch-to-switch links. By definition, traffic on edge-device-to-switch
links is limited to the available link bandwidth, which is, in turn, entirely devoted to the single
device to which it is attached. Some configuration control over internal network characteristics
is, therefore, likely to be needed. This control, both in terms of instrumentation and
reconfiguration, should be entrusted to the RM capability.

3.2.3.2.2 Guidance

The following constitutes guidance required of the information transfer capability by OA.

1. The information transfer infrastructure should provide an effectively uniform
information transfer capability from any source in the network to any destination in the
network with respect to connectivity, latency and throughput. Effectively uniform means
that all network paths will provide at least a defined minimum level of service.

2. The information transfer infrastructure should provide fault tolerance of information
transfer paths.

3. The information transfer infrastructure should provide standards-based QoS control
mechanisms for bandwidth reservation (e.g., RSVP).

4. The network infrastructure should provide standards-based mechanisms to dynamically
modify routing paths for the purpose of ensuring the uniformity requirement following
damage or disruption to the overall network. Conversely, such standards-based
mechanisms may be used to insure maximum QoS to components requiring it.

5. A common set of information transfer services should be provided to coordinate and
facilitate internal communications. OACE should employ industry- standard protocols,
such as the Internet protocol suite (see Section 3.2.7 for guidance on standards selection).

3.2.3.3 Computing Resources

This section provides rationale and guidance for selection of computing resources for OA
from the market of high-performance, low-cost commercial processors.

3.2.3.3.1 Description

From a maintainability standpoint, one of the benefits of distributed computing is the
capability to modify system capacity without requiring changes to applications. However, due to
the rapid turnover of processor technology, this necessitates portability of applications across
various commercial processors. As a means for reducing costs, the Navy intends for OA to take
advantage of, as much as possible, the high-performance low-cost mass-produced commercial
computing market, while maintaining this portability condition. In order to do this most
effectively, processor selections for OA should be made from mainstream single- and dual-
processor boards. Niche market products such as many-processor symmetric multiprocessors

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 80

should be avoided unless application performance requirements cannot be met cost effectively by
other means.

Real-time systems are almost universally I/O intensive systems. Handling many I/O
interrupts per second can impose a large overhead penalty on a single processor computer. For
this reason, some implementations utilize a second processor to field interrupts and perform
initial I/O processing. This is a critical factor in equipment selection. There are multiple ways to
handle this; one method is to use symmetric multiprocessors (SMP) and the operating system’s
inherent support for multiprocessing. In this scheme, I/O interrupts may be bound to one
processor exclusively. In any case, the critical design goal is to shield at least one processor from
the burden of I/O handling, so it can make progress on application computations.

SMPs have frequently been used in the past to meet real-time processing requirements.
Up to a point, explicit use of SMP shared memory has the potential to provide better
performance than loosely coupled message passing implementations. However, this apparent
advantage can prove illusionary as a system is scaled up due to memory conflicts, memory bus
saturation and operating system critical region exclusion periods. Where only an SMP will
provide the required performance, then clearly this technology should be used. However, the
loosely coupled approach (both physically and logically) is preferred where performance
demands necessitate and where SMP constraints would introduce limits to scalability. Note that
for software portability, even when an SMP forms the underlying computing resource base, a
loosely coupled message passing logical design is preferred because it is easier to design and
debug. In essence, modern low cost, fast processors and networks are employed to produce
application designs that are cheaper to build and maintain.

VME card cages have been the typical delivery mechanism for shipboard computing.
While this practice is expected to continue for some time due to market presence, the situation is
changing and other alternatives are likely to become available. Therefore, this guidance
document does not recommend restricting shipboard computing delivery mechanisms to VME
only.

The Naval Warfare Systems included in OA contain considerable breadth of processing
requirements. While it is certainly possible to meet all OA processing requirements with one
class of processor, it may prove to be advantageous to provide multiple classes of processing
capability within the scope of OA. The guidance here is to move away from symmetric
multiprocessors; however, a multi-tier computing resource approach need not exclude
computer/operating system combinations that provide less than the most stringent level of real-
time capability and performance. For example, the processing resources devoted to display and
other soft real-time activities need not meet the challenging requirements imposed by a radar
control program or signal processor. In addition, it should be noted that where processing
requirements dictate a specialized solution, such solutions might be adopted as exceptions to the
guidance below. This partition of resources will reduce but not eliminate the flexibility inherent
in the dynamic RM capability.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 81

3.2.3.3.2 Guidance

OACE computing resources should consist of hardware and system software with
sufficient capacity and performance to host the distributed OA applications.

1. A virtually homogeneous environment should be provided for OACE compliant
components within the OA. The term, virtual homogeneity refers to the characteristic of
a system whereby each computing element performs similarly enough so that it meets the
minimum performance, latency, and determinism requirements of the components that
make up the system. Virtual homogeneity allows realization of the benefits of
commonality without requiring absolute equipment commonality.

2. Processors with direct IO connections, and therefore fixed computational task-to-
processor mapping, are exempt from the virtual homogeneity guidance, item 1 above.

3. The OACE computing architecture should be based upon fundamental uniform building
blocks called units of computing. The unit of computing is defined as a combination of
processing speed, memory, network performance, latency, and a selection of industry
standard interfaces. The unit of computing concept provides a hardware modularity that
permits the development of a system that is scalable, fault tolerant, allows for resource
sharing, and enhances the portability of the functional design.

4. Units of computing should be combined to accommodate, via simple scaling, a variety of
applications that would otherwise require unique processing solutions.

5. Each unit of computing should consist of a single or dual CPU under the control of a
single instantiation of the operating system. The unit of computing should be sized to
meet the requirements of the distributed tactical applications and should be characterized
by the following performance parameters. Details follow below in Table 6. Units of
Computing Performance Parameters.

6. The values selected for parameters in Table 6. Units of Computing Performance
Parameters should be sufficient to accommodate the needs of the tactical applications
and should be representative of low-cost high-performance mainstream commercial
computers. The values for each of these parameters should be selected, such that the
units of computing are not excessively oversized for the majority of requirements, yet
can be scaled to support the needs of computing intensive warfighting system elements.

7. Scalability of the OACE may be achieved by use of the following mechanisms:
1) Additional units of computing
2) Incremental upgrades of components in the unit of computing (e.g., memory)
3) Technology refresh

Table 6. Units of Computing Performance Parameters

Parameter Description
SPECint95
SPECfp95

SPECint95 and SPECfp95 are industry standard measures
of processing power.

Memory The quantity and type of memory for a unit of computing
should be specified.

High Speed Network Interface The type of high-speed network interface should be
specified to facilitate combat system wide integration.

Transmit I/O Capacity
Transmit I/O Latency

These parameters ensure sufficient bandwidth and
determinism between distributed components.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 82

Parameter Description
Interrupt Response Latency Interrupt response latency is the maximum time (in µsec)

allowed from the generation of a hardware interrupt by a
device to the execution of device driver or kernel code
servicing the interrupt. This worst-case time includes all
possible periods when interrupts are disabled in order to
guard some operating system critical section.

Process Dispatch Latency Process dispatch latency is the maximum time (in µsec)
allowed from the generation of a hardware interrupt by a
device to the execution of user code requesting service
from that device. This worst case time includes the
interrupt response latency, the time required to execute
device driver or kernel code servicing the interrupt,
overhead required in context switching to the user process,
and any critical sections when context switching is
disabled by the operating system.

Fast Clock Resolution This is the period (in µsec) of the fast clock
Fast Clock Access Time This is the maximum time (in µsec) required for a user

process to read the fast clock. A local clock should
maintain time values that are always monotonically
increasing such that time does not run backward. In
addition, each access to the clock should produce a unique
value such that no two consecutive clock accesses will
result in the same time value being returned.

3.2.3.4 Peripherals

This section provides rationale and requirements for selection of computer peripherals,
special purpose devices and other add-on computing capabilities. The guidance is as follows:

1. Interfaces to commonly available commercial information technology peripherals should
utilize commercial mainstream industry standards.

2. Special purpose peripherals, such as NTDS interfaces, IRIG time boards, etc. should use
interface protocols appropriate to the device type. Every effort should be made to
provide a portable and maintainable interface mechanism.

3.2.3.5 Operating Systems

This section provides rationale and guidance for selection of operating systems in general
and POSIX compliant operating systems with suitable real-time features for mission-critical
applications.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 83

3.2.3.5.1 Description

 In the operating system domain, a number of features are required. The operating system
standards chosen for OA-based applications should support a system of priorities to ensure those
real-time processes and threads are dispatched when ready to run. Note that this does not mean
that all operating systems used for OA must be fully real-time capable. It does mean, however
that the standards family chosen does provide support for real-time. For those applications that
do not need real-time features, an operating system that conforms to the standards family but
does not provide real-time performance is acceptable. For real-time capable operating systems,
support should be provided for kernel pre-emption in non-critical region processing. The
operating system should also provide mechanisms to control priority inversion (e.g., priority
inheritance protocols). Network drivers and other I/O operations should fall within the scope of
the operating system real-time priority structure, and they should provide bounded delivery
latencies under defined circumstances.

For federated architectures, multiple operating systems may be accommodated within a
configuration based on individual needs. In this case, there is a fixed mapping of applications to
processor/operating system combinations. However, for integrated "total ship computing"
architectures (i.e. applications managed across a collection of pooled computers, it is simpler to
employ either one operating system or a family of operating systems with binary compatibility.
Note that interpreted or mobile code approaches such as the Java Virtual Machine also allow
alternative choices of operating systems to be made. However, at present the inefficiencies of
interpretive execution on Java VMs does not provide sufficient performance for many real-time
systems.

3.2.3.5.2 Guidance

Guidance for operating systems is as follows:

1. The operating system should provide standardized APIs. (The POSIX standards provide
one mechanism for attaining this.)

2. In cases when use of POSIX-based operating system APIs is not possible, the operating
system services should be provided through a portable standard operating systems
adaptation layer.

3. All operating systems intended for use in mission critical applications and support
software should support the completion of hard and soft real-time deadlines required by
the distributed tactical components

4. For distributed components with real-time processing requirements, the operating system
should provide standardized real-time scheduling facilities.

5. All operating systems should provide mechanisms for assigning application level
priorities to processes and threads, for kernel pre-emption and re-entrance and for
protection against priority inversions. Kernel critical regions should be bounded with
values not to exceed those established by application requirement analysis.

6. Support services include operating system services, file management services, standard
time services, and other utilities required for proper system operation, including
programming language facilities.

7. Software for support services should make use of industry standards and products to the

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 84

maximum extent possible. Standardized file access mechanisms, particularly for shared
network access such as the Network File System (NFS) should be provided as part of the
support services.

8. At a minimum, operating systems should support system scope threads.

3.2.3.6 Adaptation Middleware

This section provides rationale and guidance for selection of adaptation middleware and
products that export a POSIX-like operating system interface to application components.
Middleware may also be used to export a common distribution middleware interface (see Section
3.2.3.7).

3.2.3.6.1 Description

Adaptation middleware products export a standardized interface upward (i.e., from
multiple-operating systems to a single API). The Adaptive Computing Environment (ACE) from
Washington University of St. Louis, MO. provides adaptation layers for most commercially
available operating systems. ACE exports a standard set of APIs and services to applications.
As such, it strongly promotes application portability. Other adaptation layers may be developed
for middleware functions. These layers often provide a way of making non-standard products
appear to be standards compliant. In this way, application portability is enhanced.

3.2.3.6.2 Guidance

The guidance for adaptation middleware products is that a widely available and
commercially supported adaptation layer such as ACE should be considered for utilization within
OA to maintain application portability across operating systems.

3.2.3.7 Distribution Middleware

This section provides rationale and guidance for use of distribution middleware in OA
implementation.

3.2.3.7.1 Description

The term “middleware” is most often used to describe support software that facilitates
interactions between major software components and masks differences in language, platform
characteristics, message formats, communication protocols, data structures, and other factors. A
number of communication middleware protocols have value in designing large, complex real-
time systems. Furthermore, an evolution in recent years has occurred with respect to middleware
semantics, driven in part by the widespread acceptance of the object-oriented paradigm among
developers. Three classes of distribution middleware that provide capabilities relevant to OA
interprocess communication functionality are as follows:

• Distributed object computing
• Publish/subscribe data distribution

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 85

• Group-ordered communication

3.2.3.7.1.1 Distributed Object Computing. Within the domain of distributed
processing, the distributed object computing model has emerged as a robust, standards-based
technology area that is ready for use in real-time systems.

At present, several major distributed object models exist. The following are examples of
this type of model: Microsoft’s Distributed Component Object Model (DCOM) and .NET
platform, Java’s Remote Method Invocation (RMI) and Enterprise Java Beans (EJB), Web
Services with XML/SOAP, and the Object Management Group’s (OMG) CORBA standard. Of
these examples, CORBA offers the widest range of competitive vendor alternatives for a multi-
language, multi-platform environment. In addition, OMG has recently released a real-time
CORBA specification and several conforming implementations are available.

CORBA provides location transparent mechanisms to create object-oriented interfaces
between distributed components. When designing a distributed-object model, one should
consider the impact of the design on overall system performance. While creating network
objects is rendered straightforward by CORBA, performance still depends on the network
communication infrastructure.

The object oriented approach encourages partitioning of a system into numerous objects,
some of them potentially representing very small code segments. In some cases, system
partitioning into numerous small objects provides a means of more precisely modeling the
physical world; this point is reflected in the component partitioning section above. However, if
carried to an extreme, and if each object represents a separate entity from a communication
perspective, a design predicated on this model may overload the network infrastructure.
Consequently, achieving a balance is crucial in partitioning system requirements into code
segments. If too fine-grained a partitioning is attempted, it may result in a set of components that
are too small to operate efficiently. A useful concept is that of module binding strength. Data
that is frequently referenced should perhaps be held locally, i.e. within a component. Data that is
less frequently referenced, together with its associated processing, can be considered for
placement in a separate partition (executable).

3.2.3.7.1.2 Publish/Subscribe Data Distribution. Within the domain of the
publish/subscribe paradigm, messages are published to a multicast group for which membership
is encapsulated by middleware. To become consumers of messages, clients register with the
middleware using group names indicative of the type of data required. Servers publish data using
the appropriate group names. The middleware uses the group names to ensure that data is routed
to the appropriate clients, thus divorcing the server of knowledge regarding which clients have
subscribed for data updates.

The publish/subscribe paradigm is well suited for location transparent distribution of
continuously refreshed data such as distribution of track data to consumers as described above. In
general, publish/subscribe performance tends to be better than other middleware approaches and,
as such is often the first choice for high data rate applications.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 86

The publish/subscribe paradigm does have limitations that need to be accounted for when
designing a distributed system. One limitation is the lack of sufficient functionality to fully
support the replication mechanisms required to implement fault tolerance design patterns (see
Section 3.2.2.8). This limitation can be overcome through the use of group-ordered
communication protocols (see Section 3.2.3.7.1.3). Another limitation is the lack of a distributed
object interface, such as that provided by CORBA.

The OMG recently adopted the Data Distribution Service for Real-time Systems (DDS)
standard which will be finalized late in 2003. The DDS standard specifically addresses data-
centric publish-subscribe (DCPS) functionality. Several readily available commercial publish-
subscribe products provide similar services. At present no commercial products fully implement
the DDS DCPS specification; however several vendors have committed to this and
commercial implementations (e.g. RTI NDDS and THALES SPLICE) are expected within less
than one year. In the interim, the best approach is probably development of an adaptive layer
for publish-subscribe protocols. Such a layer would enable swapping out publish-subscribe
products over time with a minimum of disruption to application code.

3.2.3.7.1.3 Group-Ordered Communications. Group-ordered communications
middleware provides support for sophisticated reliable inter-process communications in
distributed systems. Central to group communications are the process group semantics. In many
respects, a process group is similar to a multicast group:

• A process group is a set of communication endpoints.

• Messages addressed to a process group are distributed to all members.

• Distributed applications join a process group to exchange messages.

• Multiple groups can be created within a distributed system.

• Any application may simultaneously be a member of multiple process groups.

Essential group membership semantics differentiate a process group from a simple
multicast group:

• Each member of the process group has access to specific information about the other
group members.

• A group member can determine how many members are in the group, and perhaps even
which specific processes executing on other nodes in the distributed system are members
of the group.

• Process group members can receive events indicating that a new member has joined the
group or a current member has left the group.

These additional semantics support the development of application redundancy for
dependability, fault tolerance, and load sharing. Additional features such as atomic multicast
(also known as safe multicast) ordered messages, group-view changes that are ordered with
respect to the message stream, and ordered state transfer provide significant benefit to the
developers of reliable, distributed systems.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 87

Approved standards for group communications tools do not yet exist. The Institute for
Electrical and Electronics Engineers (IEEE) POSIX 1003.21 Standards Committee is addressing
membership-aware multicast group communications APIs, but it is not addressing support for
higher-level group communications features, such as message atomicity and ordering.

The work in fault-tolerant CORBA benefits greatly from a standardized group
communication infrastructure. The demand for fault tolerant CORBA is growing, and the OMG
Real-time Special Interest Group (SIG) has published a suitable specification. Development of
fault-tolerant CORBA implementations, already available in limited numbers, will have a
positive influence on product availability in this critical area.

Another significant middleware consideration that contributes to successful construction
of open systems is data marshalling and endian conversions. CORBA provides a common data
representation and data marshalling. Some publish/subscribe tools do, as well, although seldom
do they provide efficient mechanisms. Many do not provide such representations and endian
conversions. A receiver-converts strategy should therefore should be adopted by the application
component when the middleware does not provide this capability or does not provide sufficient
performance. Under these circumstances, the application component should also adopt a
common data representation for messages, including 8, 16, 32, and 64 bit signed and unsigned
integers, floating point, and Booleans, and should assure that message data is aligned on word
boundaries.

3.2.3.7.2 Guidance

Guidance for distribution middleware and its use within the OA are as follows:

1. Distribution middleware should be provided to support the interactions among the
distributed components, CI/NDI support services, standard services, RM services, and
legacy systems (via data brokers) that make up OA (see Figure 3).

2. Distribution middleware software should be composed of COTS/NDI components when
performance requirements permit. Some distribution middleware products may require
extension to properly effect the interfaces, such as stubs and skeletons. Additionally,
services may be built using the COTS/NDI components, such as adaptation layers or
higher level services. (Note: domain specific components may be required to perform
functions not included in distribution and adaptation middleware, [e.g., NTDS
interfaces]. These functions may be generically referred to as middleware, but since their
counterparts do not exist in the commercial world, they are exempt from the COTS/NDI
constraint.)

3. When commercial distribution middleware standards do not exist, appropriate adaptation
layers should be developed that implement an interface representative of extant
commercial products.

4. Middleware technology for inter-component communication interfaces should be chosen
in accord with the requirements of the interface. Whenever performance requirements
and component design pattern permits, the use of a distributed object interface should be
used. The preferred distributed object standard is CORBA. High-volume distribution of
continuously refreshed data, such as tracks or navigation information, should be
accomplished via publish/subscribe methods. Middleware services for group ordered

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 88

communication should be used where state data coherency and ordering properties are
required.

5. Middleware should be used that provides enabling services for communications among
heterogeneous platforms. All middleware tools used in the OA baseline should provide
data marshalling and endian conversion services. These services should be used where
performance requirements permit.

6. Where available and otherwise suitable, middleware should be selected that provides
explicit control over classes of service (i.e., QoS characteristics such as timeouts,
latency, throughput, message delivery guarantees, etc.). An example of explicit QoS
control would be a middleware product with an API allowing applications to specify a
bounded latency associated with information transfer or distributed object invocation.

7. Middleware-based QoS features should not be used in ways that create system level
resource use conflicts among components. Such conflicts should be ameliorated through
use of dynamic RM (see Section 3.2.3.8). Use of RM’s QoS control permits resource
tradeoffs to be managed explicitly at the system level rather than contained implicitly in
the aggregated impact of component-level patterns of QoS invocations.

8. All middleware tools used in OA should provide an API that limits application exposure
to operating system and protocol specific functionality, product specific message formats
and data structures. Except when required to meet specific performance or functional
requirements, middleware tools should be chosen that allow the encapsulation of such
functionality, for example, through initialization calls or configuration files.

9. For middleware protocol types where standards are not yet available, a standard
middleware adaptation layer should be developed that encompasses functionality typical
of each relevant available class of products. This adaptation layer should export a
uniform API to applications using such services. Such layers should be removed when
suitable standards and standards-based products become available.

3.2.3.8 Design Patterns and Frameworks

This section provides rationale and guidance for the use of design patterns and
frameworks in the OA product set.

3.2.3.8.1 Description

According to Gamma, Helm, Johnson and Vlissides in their book Design Patterns:
Elements of Reusable Object-Oriented Software, a framework is “a set of cooperating classes that
make up a reusable design for a specific class of software.” The three key differences between
design patterns and frameworks are:

1. Design patterns are more abstract than frameworks. Frameworks can be embodied in
code, but only examples of patterns can be embodied in code.

2. Design patterns are smaller architectural elements than frameworks. A typical
framework contains several design patterns, but the reverse is never true.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 89

3. Design patterns are less specialized than frameworks. Frameworks always have a
particular application domain.

A framework may provide a reusable design for all or merely a part of an application.
For example, a fault tolerance framework may provide the structure and interaction of classes
that support building a fault tolerant application. Fault tolerance is an issue that is pervasive and
a fault tolerant framework would affect the entire application. A tasking framework may provide
the set of classes and class interactions that support a particular concurrency model. Although
the use of concurrency is extremely important in the component architecture, the model of
concurrency can vary across different parts of the component. Care should be exercised during
component design to insure that instances of framework use do not conflict with instances where
underlying services are invoked directly. The use of frameworks provides structuring mechanism,
design patterns and code reuse opportunities that can be leveraged by application developers to
reduce development time and life-cycle costs.

3.2.3.8.2 Guidance

Guidance for the use of frameworks within the OA is as follows:

1. Frameworks should be leveraged to facilitate application structure commonality and
code reuse where appropriate frameworks exist and have been identified as supplying
needed capabilities (e.g. fault tolerance, concurrency, database access, instrumentation).

2. Frameworks should be well documented, extensible, and provide the ability to easily add
new services.

3.2.3.9 Dynamic Resource Management (DRM)

This section provides rationale and guidance for management of computing resources and
dynamic allocation of components to the pool of virtually homogeneous computers that
constitute the OA equipment suite.

3.2.3.9.1 Description

The purpose of RM is to provide run-time control of the computing resources in the
system. In providing this capability, two levels of control are possible: static and dynamic. With
static control, configurations are fixed at design time and the run-time resource manager uses
these configurations to perform startup, health monitoring, reconfiguration, and shutdown.

Similar to static control, a dynamic control performs startup, health monitoring,
reconfiguration, and shutdown. However, with dynamic control, the resource manager uses
application and system performance requirements to derive and execute appropriate system
reconfigurations at run-time, in addition to supporting pre-defined configurations. Dynamic
reconfiguration of this nature enables the resource manager to ensure that the system
continuously operates to provide a defined level of QoS.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 90

Figure 14. Resource Management Architecture provides a RM architecture that features
both static and dynamic capabilities.

RM components provide monitoring and control of network, operating system,
middleware, and application resources within the distributed computing environment. Resource
and QoS management services are intended to provide the ability to dynamically configure and
reconfigure hardware, operating system, and application components to ensure that desired or
negotiated application, path, and mission-oriented QoS requirements are met at run-time.

To be most useful and least intrusive, the RM capability should introduce little or no
impact on basic application design choices. It should not, for instance, arbitrarily force selection
of single-threaded vs. multi-threaded applications, periodic processing vs. event driven, blocking
vs. non-blocking I/O, or the choice of middleware approach.

The high-level architecture of the RM capability is a feedback control loop consisting of
monitoring, decision-making, and control (configuration adjustment) components. System
designers specify the required performance of each component. Application monitoring
instrumentation measures component performance with respect to specified requirements. When
a violation of required performance takes place (or is projected to take place) the RM decision-
making capability utilizes status, load, performance, and fault metrics gathered by components
that monitor processor and network load. The decision-making capability then determines if,
when, and how reconfiguration actions should be carried out. The resource control components
then map RM control orders to the low-level control actions that should be carried out to
implement the desired reconfiguration actions.

Specifications Decide

Monitor Implement

QoS Spec
Modifications

System / QoS
Specifications

QoS Managers

Resource
Allocator

Host Load
Analyzer

Collector /
Correlator

Application
Instrumentation

History
Servers

Host
Discovery

Hardware Fault
Detection

UNIX and WinNT
OS Monitors

Application
Control

Mission Priority
Control

Readiness
Assessment

Displays

Network
Monitoring

Network
Feedback &
Adaptation

UNIX and NT App
Control Agent

Applications

Figure 14. Resource Management Architecture

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 91

3.2.3.9.2 Guidance

RM monitors system performance to assure that the system meets the mission priorities
established by ship's command. RM supports fault detection and recovery in cooperation with
application components. Guidance for RM, both static and dynamic, are given below:

1. RM should have the capability to determine and control system configuration, load and
initialize application components, allocate computing resources, and monitor and control
the use of resources.

2. RM should have both an automatic mode of operation and an operator-controlled mode
of operation.

3. RM should provide a capability for engineers and operators to statically define and
activate system configurations, including processor assignment, communication routing,
and other factors. A sufficient number of alternate static configurations should be
established to meet availability requirements via automatic- or operator-initiated
reconfiguration in response to system faults and loss of resources.

4. RM should have a capability for engineers to define QoS and performance requirements
for application components. The QoS specification language should be independent of
programming language and application domain. QoS specification capabilities should
include the ability to define a number of processing metrics, including response times,
periodic processing intervals and duration’s, multi-component end-to-end latencies,
load-balancing metrics and failure conditions and recovery actions.

5. RM should provide a capability to assign QoS requirements dependent on defined
system modes of operation (e.g., non-combat operations vs. combat operations). A
capability should be provided whereby system engineers can define required system
configuration reallocations in accord with the new mode of operation.

6. RM should coordinate the recovery actions of all system components (see also Section
3.2.3.11). RM should provide services in support of fault detection and recovery. Faults
should be detected in processors, peripherals, network components, middleware and
application computer programs.

7. RM should interoperate with component recovery mechanisms; i.e., time critical
applications should be designed to perform quick response failure recovery without
intervention by RM. In performing the quick response recovery, if a time critical
component falls below an acceptable level of redundancy, RM should operate to restore
the lost redundancy after the fact, subject to resource availability. Non-time critical
applications should be designed so that they may be restarted under RM control.

8. RM should have the capability to continuously monitor mission and system priorities,
application performance and the status and utilization of system resources (see
application and system resource instrumentation guidance in Section 3.2.3.10). When
placed in the automatic mode of operation, RM should allocate resources dynamically at
runtime to tasks without operator intervention as required for system optimization,
tactical load balancing and fault recovery, or when faults are anticipated.

9. RM should provide a capability to define end-to-end QoS performance requirements
across multiple components and to monitor performance, latency and load along these
multi-component paths. Upon detection of a violation of the specified QoS parameter,
RM should provide a capability to reallocate components for improved performance and
to initiate load management via activation of multiple-replicated copies of a component.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 92

10. The dynamic RM capability should have the capability to adjust internal network
characteristics (e.g., reserved bandwidth, routing, etc.) in order to ensure tactical
performance.

11. RM should provide repeatable and testable mechanisms to ensure closed-loop stability
with respect to resource allocation operations.

12. To ensure component compatibility with RM, component developers should design
certain features into system components. These features include the following:

1) Specification of application component configuration and performance
requirements via a QoS specification language

2) Initial and statically defined system configuration
3) Application and support component startup and shutdown services
4) Operating system level applications monitoring
5) Middleware-level application monitoring
6) Application instrumentation and performance monitoring (see Section 3.2.3.10)
7) Direct RM-to-application control capabilities

13. RM should provide operator display screens for both engineering activities and for
deployment operations. Deployment displays should be limited in complexity and
supported with automation to reduce required crew workload.

14. RM performance should be sufficient to support all specified OA tactical performance
requirements. Detailed RM performance requirements should be defined during OA
development.

15. RM should include functionality to monitor and display data internal to OACE
components, including RM itself. Human interaction with OACE via RM should
include, but not be limited to, mode selection, operability tests, trouble-shooting, and
maintenance. Maintenance actions should include modification of the system
configuration following a change to a processor or network component and input of
static component allocation data during an engineering maintenance activity.

16. RM software should make use of commercial standards and NDI products to the
maximum extent possible.

3.2.3.10 Instrumentation, Recording and Assessment

This section provides rationale and guidance for instrumentation, recording and
assessment services of OA components, processors, networks, etc. in support of component
testing, certification and dynamic RM.

3.2.3.10.1 Description

Computer systems have long been instrumented, both during development and during
deployment. The benefits provided to programmers and engineers for debug and testing during
development are well established. The benefits during deployment are equally valuable in that
recorded data may be used to diagnose anomalous situations experienced during operation.

 With the advent of dynamic RM, the benefits of instrumentation take on an entirely new
dimension; i.e., permitting real-time adaptation of the system configuration resulting from
system health assessments based on instrumentation data. Two types of information are required

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 93

for dynamic resource allocation: 1) application performance information and 2) computing
resource consumption information. Resource consumption information is further subdivided into
computer resource use and network resource use.

Application performance information is required to determining whether applications are
meeting their weapon system performance requirements. Examples of this include periodic
processing activation times and duration’s, event latencies, and workload metrics (e.g., number
of tracks processed). Status information is needed to determine the health of the application and
whether the application is configured properly. Examples include initialization status, internal
view of interface status, etc. Error condition information allows the reporting of exceptions and
problems detected internally by the application. Examples include detection of corrupted data,
faults on interfaces, middleware status or response problems, system call response errors, etc.

Computing resource consumption information is measured at the CPU level and at the
network level. Resource use data provides the information needed to identify available resources
that can be assigned when dynamically changing system configuration.

In fulfilling these instrumentation requirements, a set of instrumentation capabilities
should be adopted that is consistent between the data collection needs and the RM needs.

3.2.3.10.2 Guidance

Guidance for instrumentation for OA is as follows:

1. Instrumentation should be used to collect run-time data and provide system performance
feedback to RM monitoring capabilities. Services include data extraction, collection,
reduction, analysis, and presentation.

2. The instrumentation capability should provide services and an API for collection of
application-defined events and performance metrics. Information collected should
include, but not be limited to, application performance and status data, application state
and state changes, internal processing loads, occurrence of key events, internally detected
error condition and internal view of interface status.

3. The instrumentation capability should provide services for measuring processor loading,
memory use and other computing system metrics from all processors. Information
collected should be at both the processor level and the process level. Where possible,
thread information should also be collected. Information monitored should include:

1) Operating system version and machine configuration
2) CPU configuration, status, and utilization
3) Memory configuration and usage
4) Network configuration, status, and utilization
5) File system configuration, status, and utilization
6) Process status, including CPU, memory, network, and file system utilization for

each process
7) Network load as seen by a particular host
8) Information concerning any remotely mounted file systems (e.g., NFS).

4. The instrumentation capability should provide services for measuring network metrics.
Metrics should be collected at both the edge device connection level and on any internal

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 94

switches, routers and their associated links. Metrics for each link should include, but are
not limited to, bandwidth, throughput and latency. In addition, each host’s view of its
network loading should be collected (see item 3(7) above).

5. The instrumentation collection function should be implemented as a server that
communicates with a scalable number of clients. Both the server and client processes
should have minimal performance impact on the system under test.

6. Three levels of instrumentation should be defined: developmental, operational (in
support of dynamic RM, see Section 3.2.3.8), and war diary. OA and resource allocation
design should be such that operational and war diary instrumentation may enabled at all
times without adverse impact on tactical performance.

7. The server and the clients should not be developed with dependencies upon specific
hardware items. The server should not limit the client’s flexibility to manage the client’s
data buffer pools, control the events to monitor, specify data item formats, or group
events into views of specific interest.

8. Details of services provided for monitoring and variations of collection software should
be adapted to the available services where necessary.

3.2.3.11 Failure Management

This section provides rationale and guidance for integrated failure management in the
OACE (i.e., integration of fault detection, localization and recovery actions across all
applications and supporting technologies).

3.2.3.11.1 Description

Failure management is the combined capabilities and interactions of all components of
the architecture in support of fault tolerance for the overall system. It encompasses operating
system services, middleware and associated system composition services, information transfer
services, RM services, as well as application program design. This capability is particularly
important since many component technologies present in the commercial marketplace are self-
contained with respect to failure detection and fault tolerance.

3.2.3.11.2 Guidance

The following constitutes the failure management guidance for OACE components:

1. The failure management capability should operate in an integrated fashion across all of
OACE components. The failure management capability should be designed in such a
manner to ensure that detection and recovery actions should not cause erroneous system
operation. This guidance should be relaxed in the case of network segmentation.

2. For COTS products that provide adequate access to internals, externally observable
behavior should be monitored to the maximum extent practicable for the purpose of
detecting and diagnosing faults and initiating recovery actions.

3. Failure management should consist of multiple tiers of recovery actions. The first tier
should be built-in component failure recovery, whereby components initiate fail-over to
replicated copies. The second tier should be re-instantiation of lost capability under
control of RM. This would normally be accomplished by means of RM reload and

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 95

restart of lost components. In some cases, where timeliness requirements permit, first
tier failure recovery via application intrinsic replication may not be required.

4. OACE external interfaces to legacy components should utilize redundant physical
connections between OACE communication nodes and external systems. The interface
between the fully compliant OACE implementation and the associated warfighting
system elements should provide for data flow and control behavior between the
respective OACE subsystem and the rest of the weapon system.

3.2.3.12 Information Assurance

This section provides rationale and guidance for incorporation of information assurance
features into OA and the OACE. It also addresses the interaction between information assurance
technology and the resource manager.

3.2.3.12.1 Description

The overall objective of information assurance service is to ensure that mission critical
applications have access to the necessary computing resources and data needed to complete the
current mission of the ship successfully despite external attacks against the system. Traditional
security services include authentication, confidentiality, and access control. Specifically,
computationally expensive and complex encryption technologies that provide authentication and
confidentiality services may not be needed inside the NWS enclave. These technologies may be
needed on the “edges” of the enclave in order to support the encryption requirements of external
systems. The technology chosen to implement OA security measures should be readily
certifiable.

 The shift to CI/NDI components presents security threats that were not present in
previous NWS baselines. The security vulnerabilities of the commercial world, such as denial of
service attacks and computer viruses, are now a concern to the NWS since the common attacks
found in the commercial world apply to many of the systems that will be used to host
components of the NWS.

A defense in depth strategy should be considered in the design of OA. Firewalls, intrusion
detection devices, de-militarized zones (DMZs), and anti-virus software should be considered at
points where the NWS communicates with external systems (either shipboard or land-based), as
well as within the NWS enclave.

3.2.3.12.2 Guidance

The following constitutes the guidance for information security interaction with RM:

1. The information assurance technology should have the ability to prevent known
information warfare attacks.

2. The system should employ available information assurance technology to detect and
counter information warfare attacks.

3. The information assurance technology should alert appropriate personnel and/or the
resource manager when an information warfare attack has been detected.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 96

4. The information assurance technology should notify, and if possible, recommend a
response to appropriate personnel, security services and/or the resource manager when an
information warfare attack has been detected.

5. The information assurance technology should be capable of implementing an automated
response to an information warfare attack independent of personnel or the resource
manager.

3.2.3.13 Time Service

This section provides rationale and guidance for providing a standard OA time
distribution and synchronization service via the widely used commercial Network Time Protocol
(NTP).

3.2.3.13.1 Description

The nature of real-time processing is that most, if not all, computers running real-time
applications should be time synchronized to a fairly precise tolerance. This is true due to the
coordination that should occur among the various weapon system components in the solution of
problems involving physics and kinematics.

Two types of solutions are available to achieve time synchronization: 1) dedicated
hardware (e.g., IRIG-B), and 2) software-based clock synchronization algorithms (e.g., NTP).
Either approach is technically acceptable; however, the NTP approach has the advantage that it
does not require additional equipment. NTP is a protocol design to synchronize the clocks of a
computer over a network. The NTP approach, which is inherently distributed and decentralized,
is fairly robust.

Studies have shown that, with proper engineering of the time synchronization subnet, a
one-millisecond time synchronization requirement can be met with commercial computers and
networks using NTP. The core of NTP is a basic feedback loop controlled by a number of
parameters including minimum and maximum polling interval. This feedback loop should be
engineered on a system-by-system basis to achieve the required level of performance. This
performance may be characterized by a number of factors including: 1) the level of
synchronization required and 2) the time required to reach that level of synchronization within a
defined standard deviation after a perturbation event (e.g., startup) has occurred.

This second parameter is sometime referred to as the NTP settling time and represents the
time required for the feedback loop to stabilize after reset or loss of a clock. This settling time is
dependent on a number of factors, including computer and operating system types, network
characteristics and internal NTP parameter settings. Any decision concerning NTP use in the OA
implementation should be based on engineering analysis of likely NTP settling time and
synchronization accuracy compared to NWS operational requirements.

3.2.3.13.2 Guidance

Guidance for the OACE time service is as follows:

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 97

1. Support for a standardized combat-system-wide single time reference should be
implemented in OA.

2. When performance characteristics permit, NTP should be considered for use as the
standard time reference.

3. An NTP synchronization subnet should be engineered for optimal performance and fault
tolerance including the use of multiple time sources and adequate clock implementations
to support fine tuning of local clocks.

4. Existing approaches to distributing time over the Internet are vulnerable to external
attack and tampering, as these do not take advantage of any authentication or
cryptographic methods.

5. If a synthetic time service is used for embedded simulation and training operation, it
should not interfere with or result in erroneous warfighting system operation. The
artificial nature of this capability should be obvious to warfighting system operators and
should be capable of rapid de-activation.

3.2.3.14 Programming Language Facilities

This section provides rationale and guidance for incorporation of programming language
support facilities into the tool set for the OA development effort. The following programming
languages are expected to be supported within OA applications:

• C/C++
• Java
• Ada

The guidance for programming language facilities is as follows:

1. Programming language facilities should support Procedural and Object Oriented
Distributed programming.

2. All OACE infrastructure services should allow for bindings to all high-level languages
used within the OA set of components.

3. Standard reuse libraries should be used where appropriate and effective.
4. Common coding and naming conventions should be applied throughout all OA software

per recognized industry and development organization standards.
5. Programming language facilities should support Open Standards in order to interconnect

distributed applications and disparate platforms.
6. Programming language facilities should be able to support the implementation of high-

volume, scalable, distributed environments.
7. Since adequate documentation is crucial for both product maintainability and component

reusability, some programming language facilities (e.g., Java) provide utilities which
facilitate creation of documentation in the course of implementing the source. To the
extent that such utilities are available, their use should be considered.

3.2.4 System Composition

System composition is an aggregate term that describes synthesis of application
components from available technologies, tools, models, methods, and mechanisms. It consists

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 98

predominantly of utilizing support software, or “middleware,” to construct application computer
programs in accord with design patterns such as those introduced in Section 3.2.1 and elaborated
in Section 3.2.2.

Where middleware standards exist, products conforming to these standards should be
used to construct application components. When standards do not yet exist, effort should be
made during product selection to pick products that have widespread utilization and a
commercial support structure.

For each application component, early design activities should focus on determining the
functional capabilities and boundaries of each component. These activities include deciding
what design pattern best fits the requirements, determining appropriate mechanisms for fault
tolerance and scalability, identifying the interfaces with other components, and deciding on the
appropriate technologies to utilize in effecting interactions between the component and other
components.

3.2.5 Displays

This section provides rationale and guidance for designing the OA display capability. It
is recommended that the display architecture be designed so that any operator may use any
console to accomplish any assigned mission.

3.2.5.1 Description

In legacy system implementations, display consoles were often unique to the operator
they supported. In some instances, standardized consoles were customized through use of special
purpose add-on devices and interfaces. This design approach was justifiable given the point-to-
point interfaces and limitations in the graphics hardware and graphical support tools.

However, modern network and graphics technology provide an opportunity for a much
more standardized and, therefore, logistically appealing solution in which any console may be
used to perform the entire range of actions needed to support any operator mode or task. This
approach not only provides logistics benefits, but it also promotes software reuse. Furthermore,
the resultant equipment configuration is inherently more resilient in battle.

3.2.5.2 Guidance

The following provides the guidance for display console organization with respect to
generality of use.

1. Display and operator support software should conform to the guidance contained in this
document.

2. Except for unique and/or special purpose requirements, the OA system should be
designed such that each console supports the entire range of actions that need to be
executed by each operator.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 99

3.2.6 System Test and Certification

This section provides rationale and guidelines for certifying systems based on the
principles of dynamic resource allocation.

3.2.6.1 Description

Certification of traditionally designed systems is well understood. It consists primarily of
functional and performance testing against specified system requirements, usually organized
according to test cases and scenarios. However, systems employing dynamic management of
resources, particularly those involving a degree of heterogeneity in the equipment configuration,
require a more complex approach. Not only should the allocation mechanisms be tested, but also
differences in equipment and configurations should be reconciled. This gives rise to additional
requirements for certification of such systems.

In describing the guidance for certification of dynamically allocated systems, the term
virtual homogeneity is used to describe a property of the computer and operating system that is
required to support the certification process. This property states that each computer within a
defined class of computers should perform substantially like every other computer in the class.
Executables compiled for each computer in the class should yield operationally and statistically
equivalent answers for an appropriate abstraction hierarchy (i.e. the granularity of system
performance that is of interest to a particular user – in this case, the warfighting system’s
operators and sensor and weapons capabilities). Thus, virtual homogeneity is preserved when the
variation in component output caused by any difference in computing resources is operationally
negligible, a criterion that can be defined and tested.

Multiple classes of computers may be required for the foreseeable future to handle
efficiently differing warfighting system requirements. For example, the type of computers and
operating systems most effective for real-time weapons control may not be fully suitable for
providing display capabilities and vice versa. However, several computers and operating systems
may be fully capable of performing weapons control functions. The various computers falling in
this latter category form an equivalence class and all products in this class are candidates for
selection as OA computer resources.

This concept, when combined with the pool of computers concept discussed in Section
3.2.3.8 on RM, leads to multiple pools encompassing the equivalence classes needed to fully
implement NWS functionality. This constraint implies that several conditions should be met.
First, a small number of computing resource types is preferable. Identical resources meet the
virtual homogeneity criterion by definition, whereas a high degree of variation among processing
resources will likely increase testing time and cost. In addition, sub-setting the total resource
pool into classes of resources may result in a significant constraint on the dynamic RM.

If such constraints are needed, they could take the form of a tree of subsystems or aggregations of
components. Each aggregation exists in only a manageable number of configurations. A case
can be made that there are no (or negligible) interactions between the choices of configurations
of sibling subsystems. Finally, all computers should provide a minimum level of performance

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 100

(“unit of computing”) sufficient to ensure that system and component performance requirements
are met.

Note that logistics considerations weigh in favor of limited numbers of classes and real
homogeneity within classes.

Finally, any configuration that RM creates in the resource allocation process should be
schedulable. Thus, part of the certification process should schedule issues. Also, requiring
consideration during certification are stability considerations. In effect, RM’s allocation should
not “trash” or produce a series of configuration changes sensitive to relatively small changes in
the external environment. Due to the dynamic nature of RM, these considerations will likely
require that support for the schedule and stability is incorporated directly into RM itself.

3.2.6.2 Guidance

The guidance for system testing and certification of OA is as follows:

1. Traditional functional and performance testing should be done on tactical and support
components.

2. Functional and performance testing should be done on the dynamic RM capability.
3. Testing should be done to verify that system resources constitute “virtually

homogeneous” pools.
4. If virtual homogeneity is not ensured across computing resource variants, additional

testing is required to verify that resource allocation configuration constraints reflective of
this are applied correctly.

5. Verification of scheduled analysis methods, stability analysis models, and capabilities
should be built into the resource manager’s allocation methods.

6. All OACE components should have a regression test suite.

3.2.7 Selection of Standards

A major advantage of the open system approach is that obsolete or failed components can
be replaced quickly and easily. In order that this is accomplished effectively, it is highly
advantageous to pick products in the commercial mainstream. Such products are far more likely
to be readily available and interchangeable than niche market products.

The OACE should use industry standards to take maximum advantage of commercial
mainstream technologies. Types of standards are listed in Table 7. Types of Standards below.
Note that wherever possible, OACE-compliant system components should adhere to appropriate
industry standards. There should be the minimum possible dependence of system components on
vendor proprietary features. When features for which standards exist are employed, those
standards should be employed. OACE components should be built and/or selected in a manner to
foster portability across a variety of lower level technology base components. Metrics for
measurement should be identified, and goal thresholds should be established for the metrics.

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 101

Table 7. Types of Standards

Standard Type Definition

Formal Standard Standards that are developed, approved, and maintained by a
formally recognized standards committee by a consensus
process. Examples: POSIX, CORBA.

Industry Standard An industry standard is a formal or de facto standard that has
been widely accepted and broadly implemented. A sufficient
number of sources for products or services adhering to the
standard are available to provide reasonable vendor
independence. Examples: American National Standards
Institute (ANSI) C, Small Computer System Interface (SCSI),
PCI, and Java.

Defacto Standard Standards that may have begun as proprietary but have
achieved widespread acceptance by users. These standards are
typically licensed to other vendors to produce compatible
products. The vendor that produced the standard maintains the
standard. Example: Parallel Computer Interface (PCI).

Proprietary Standard Standards that have been published and are publicly available
but the number of vendor implementations is limited (usually
one). Example: Visual Basic. OACE should avoid the use of
proprietary standards unless no other products will provide
required functionality or performance.

3.2.7.1 Applicable Standards

A number of standards are sufficiently mature to merit their use in OA. These are invoked
in detail in the companion volume to this document, Open Architecture Computing Environment
Technologies and Standards, Version 1.0. Traceability of the OA standards to the Joint
Technical Architecture (JTA) is maintained and the relationship of OA standards to JTA is
discussed in the just-mentioned standards document. Generally, the families of standards
invoked for OA are as follows:

• TIA physical media standards
• IETF network standards
• POSIX operating system standards
• OMG middleware standards

3.2.7.2 Open Source Products

The open-source model provides an additional source of technology components for
construction of the OACE. Open source products have the advantage of permitting the developer
to review source code for quality control purposes and, if needed, add critical features vital to
system operation. Some open source products do lack a commercial support base; however,
many have a commercial support structure. Open source products should be considered when
there are economic reasons for doing so and/or when such products provide a needed capability

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 102

that is not currently obtainable by any other means. The guidance for open source products is as
follows:

1. Wherever possible, open source products should have a commercial product support
base.

2. Wherever possible, open source products should have a broad user base.
3. Licensing obligations for use of open source products should, not in any case, obligate

the Navy or its contractors to return code to the open-source community; nor should use
of open source product compromise the integrity of the Navy’s warfighting system
acquisition process.

3.2.7.3 Non-standard products

Examples of non-standard but widely used products or products with unique capabilities
that merit consideration – not all of which are real-time capable – include:

• Non-POSIX real-time operating systems
• Microsoft Windows operating system
• Commercial database programs
• Commercial publish-subscribe protocols (e.g., NDDS)
• Ensemble group-ordered communication protocol
• Rosetta signal processing middleware
• Adaptive Communications Environment (ACE) operating system adaption middleware

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 103

APPENDIX A

GLOSSARY OF TERMS

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 104

AAW Anti-Air Warfare
ACE Adaptive Communications Environment
ACL Access Control List
ACS Aegis Combat System
ACTS Aegis Combat Trainer System
ADO Active Data Object
ADS Aegis Display System
ALIS Aegis LAN Interconnect System
ANSI American National Standards Institute
API Application Program Interface
ARC Aegis Reusable Components
ASCII American Standard Code for Information Interchange
ASN RD&A Assistant Secretary of the Navy for Research, Development and
 Acquisition
ATDU Aegis Tactical Display Upgrade
ATM Asynchronous Transfer Mode
AWS Aegis Weapon System
C&D Command and Decision System
CBD Component Based Development
CC&D Common Command and Decision
CCM CORBA Component Model
CEC Cooperative Engagement Capability
CG Cruiser, Guided Missile
CHTML Compact Hyper Text Markup Language
CI/NDI Commercial Item / Non-Developmental Item
CM Configuration Management
CNO Chief Naval Operations
COE Common Operating Environment
CORBA Common Object Request Broker Architecture
COTS Commercial-Off-The-Shelf
CSRD Computing System Requirements Document
CSS Cascading Style Sheet
DARPA Defense Advanced Research Projects Agency
DB Data Base
DBA Data Base Administrator
DBMS Data Base Management System
DCE Distributed Computing Environment
DCOM Distributed Component Object Model
DDG Destroyer, Guided Missile
DHTML Dynamic HTML
DII COE Defense Information Infrastructure Common Operating Environment
DMS Diminished Manufacturing Source
DoD Department of Defense
DOM Document Object Model

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 105

DoN Department of Navy
DRM Dynamic Resource Management
DTD Document Type Definition
EAI Enterprise Application Integration
EDM Engineering Development Model
EJB Enterprise Java Bean
FCS Fire Control System
FTP File Transfer Protocol
GB Giga Byte
GIG Global Information Grid
GOTS Government-Off-The-Shelf
GUI Graphical User Interface
HA High Availability
HiPer-D Hi Performance Distributed Computing
HSI Human Systems Integration
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
HTTPS Hyper Text Transfer Protocol - Secure
IDE Integrated Development Environment
IDL Interface Design Language
IE Internet Explorer
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IGMP Internet Group Management Protocol
IIS Internet Information Server
I/O Input Output
IOP I/O Processor
IP Internet Protocol
IPT Integrated Product Team
IRIG-B Inter-range Instrumentation Group
IT Information Technology
J2EE Java 2 Enterprise Edition
J2ME Java 2 Micro Edition
J2SE Java 2 Standard Edition
JAAS Java Authentication and Authorization Service
JCA Java Community Practice
JDBC Java Data Base Connectivity
JMS Java Messaging Service
JPEG Joint Photographic Expert Group
JRE Java Runtime Environment
JSP Java Server Page
JVM Java Virtual Machine
KB Kilo Byte
LAN Local Area Network
LM/NE&SS Lockheed Martin, Naval Electronic and Surveillance Systems
LTR Letter

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 106

MOTS Military-Off-The-Shelf
MS Microsoft
MVC Model-View-Controller
MW Middleware
NAS Network Attached Storage
NAVSEA Naval Sea Systems Command
NDDS Network Data Distribution System
NFS Network File System
NIC Network Interface Card
NIST National Institute of Standards and Technology
NOFORN No Foreign Releasability
NRT Near Real Time
NSWCDD Naval Surface Warfare Center, Dahlgren Division
NTDS Navy Tactical Data System
NTM Network Transaction Management
NTP Network Time Protocol
NTW Navy Theater Wide
NWS Naval Warfare Systems
OA Open Architecture
OACE Open Architecture Computing Environment
ODBC Open Data Base Connectivity
OMFTS Operational Maneuver From the Sea
OMG Object Management Group
ONR Office of Naval Research
OO Object Oriented
OOAD Object Oriented Analysis and Design
OOP Object Oriented Programming
ORB Object Request Broker
ORTS Operational Readiness Test System
OS Operating System
OSF Open Software Foundation
OSJTF Open Systems Joint Task Force
P2P Peer-to-Peer
PC Personal Computer
PCI Parallel Computer Interface
PDA Personal Digital Assistant
PDF Portable Document Format
PEO-IT Program Executive Office - Information Technology
PEO-SC Program Executive Office – Surface Combatants
PEO-TSC Program Executive Office – Theater Surface Combatants
PIDS Prime Item Development Specifications
PKI Public Key Infrastructure
PMS Program Manager Sea (NAVSEA)
POP Post Office Protocol
POSIX Portable Operating System Interface (POSIX) Standard
QA Quality Assurance

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 107

QoS Quality of Service
R&D Research and Development
RAID Redundant Array of Independent Disks
RAM Random Access Memory
RD&A Research, Development and Acquisition
RDBMS Relational Data Base Management System
RM Resource Management
RMI Remote Method Invocation
ROM Read Only Memory
RPC Remote Procedure Call
RSVP Resource Reservation Protocol
RT Real Time
RTOS Real Time Operating System
SAN Storage Area Network
SBC Single Board Computer
SBMD Sea Based Missile Defense
SCIB Ships Characteristics Improvement Board
SCSI Small Computer System Interface
SCIB Ships Characteristics Improvement Board
SCSI Small Computer System Interface
SECNAVINST Secretary of the Navy Instruction
SER Serial
SIG Special Interest Group
SIPRNET Secure Internet Protocol Router Network
SMTP Simple Mail Transfer Protocol
SNTP Simple Network Time Protocol
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SPAWARSYSCEN Space and Naval Warfare Systems Center
SPY Shipboard Phased Array Radar
SQL Structured Query Language
SRASS Services for Reliable, Available, and Serviceable Systems
SSDS Ship Self Defense System
SSL Secure Socket Layer
SW Software
TAFIM Technical Architecture for Information Management
TB Tera Byte
TBMD Theater Ballistic Missile Defense
TCP Transport Control Protocol
TCP/IP Transport Control Protocol / Internet Protocol
UDDI Universal Description Discovery and Integration
UDP User Datagram Protocol
UDP/IP User Datagram Protocol/Internet Protocol
UI User Interface
UML Unified Modeling Language
URI Uniform Resource Identifier

D R A F T Open Architecture Computing Environment Design Guidance D R A F T

Version 1.0 (DRAFT) 04 September 2003 108

URL Uniform Resource Locator
VME Virtual Micro-bus European
W3C World Wide Web Consortium
WAN Wide Area Network
WAP Wireless Application Protocol
WCS Weapons Control System
WML Wireless Markup Language
WSDL Web Services Description Language
WWW World Wide Web
XML [E]Xtensible Markup Language

